精选生物统计学方差分析讲义_第1页
精选生物统计学方差分析讲义_第2页
精选生物统计学方差分析讲义_第3页
精选生物统计学方差分析讲义_第4页
精选生物统计学方差分析讲义_第5页
已阅读5页,还剩161页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(优选)生物统计学方差分析本文档共166页;当前第1页;编辑于星期二\18点30分基本概念方差分析:方差分析是对两个或两个以上样本平均数差异显著性检验的方法。

例:为研究某种生物材料的生物学性能,将材料分成三组,分别与成骨细胞共培养1,7,11天后测试细胞活性。为避免误差,每组测试5个样品,试判断材料的生物学性能。本文档共166页;当前第2页;编辑于星期二\18点30分基本概念本文档共166页;当前第3页;编辑于星期二\18点30分两个样本数据平均数比较1、当总体方差和已知,或总体方差和未知,但两样本均为大样本u

检验2、当总体方差和未知,且两样本均为小样本t

检验本文档共166页;当前第4页;编辑于星期二\18点30分例:生产某种纺织品,要求棉花纤维长度平均在30mm以上。现有一棉花品种,以n=400进行抽样,测得纤维平均长度为30.2mm,标准差为2.5mm,问该棉花品种的纤维长度是否合格?分析:1)已知,u检验

2)由于只能大于30mm才能合格,故单尾检验解:(1)假设,即该棉花品种纤维长度不能达到纺织品生产要求含量。对

(2)选取显著水平(3)检验计算(4)推断u<u0.05=1.64,P>0.05,显著水平上接受H0,拒绝HA。即认为该棉花品种纤维长度不符合纺织品种生产要求本文档共166页;当前第5页;编辑于星期二\18点30分

例为了探讨不同窝的动物的出生重是否存在差异,随机选取4窝动物,每窝中均有4只幼仔,结果如下:表4窝动物的出生重(克)动物号窝别ⅠⅡⅢⅣ1234和34.733.326.231.6125.833.226.028.632.3120.127.123.327.826.7104.932.931.425.728.0118.0平均数31.45030.02526.22529.500

通过对以上数据的分析,判断不同窝别动物出生重是否存在差异。本文档共166页;当前第6页;编辑于星期二\18点30分方差分析的意义k个样本均数的比较:

如果仍用t检验或u检验,需比较次数为:

例如4个样本均数需比较次数为6次。假设每次比较所确定的检验水准为0.05,则每次检验拒绝H0不犯第一类错误的概率为1-0.05=0.95;那么6次检验都不犯第一类错误的概率为(1-0.05)6=0.7351,而犯第一类错误的概率为0.2649本文档共166页;当前第7页;编辑于星期二\18点30分方差分析的意义k个样本均数的比较:

如果仍用t检验或u检验,有以下问题:

1、检验过程繁琐

2、无统一的试验误差,误差估计的精确性和检验的灵敏性低

3、推断的可靠性降低,犯第1类错误的概率增加本文档共166页;当前第8页;编辑于星期二\18点30分方差分析:是一类特定情况下的统计假设检验,或者说是平均数差异显著性检验的一种引伸。u检验和t

检验可以判断两组数据平均数的差异的显著性,

而方差分析则可以同时判断多组数据平均数之间的差异的显著性。当然,在多组数据的平均数之间做比较时,可以在平均数的所有对之间做

t检验。但这样做会提高犯Ⅰ型错误的概率,因而是不可取的。

本文档共166页;当前第9页;编辑于星期二\18点30分

方差分析由英国统计学家首创,为纪念Fisher,以F命名,故方差分析又称F检验(F-test)。用于推断多个总体均数有无差异本文档共166页;当前第10页;编辑于星期二\18点30分方差分析的定义

方差分析是对两个或多个样本平均数差异显著性检验的方法。它是将测量数据的总变异按照变异来源分解为处理效应和试验误差,并做出其数量估计。

它将所有处理的观测值作为一个整体,一次比较就对多有各组间样本平均数是否有差异做出判断。如果差异不显著,则认为它们都是相同的;如果差异显著,再进一步比较是哪组数据与其它数据不同。本文档共166页;当前第11页;编辑于星期二\18点30分方差分析的意义方差分析基本思想:1、把k个总体当作一个整体看待2、把观察值的总变异的平方和及自由度分解为不同来源的平方和及自由度3、计算不同方差估计值的比值4、检验各样本所属的平均数是否相等实际上是观察值变异原因的数量分析

本文档共166页;当前第12页;编辑于星期二\18点30分方差分析的应用条件和用途方差分析应用条件:

1、各样本须是相互独立的随机样本

2、各样本来自正态分布总体

3、各总体方差相等,即方差齐方差分析基本用途:

1、多个样本平均数的比较

2、多个因素间的交互作用

3、回归方程的假设检验

4、方差的同质性检验本文档共166页;当前第13页;编辑于星期二\18点30分第一节方差分析的基本原理本文档共166页;当前第14页;编辑于星期二\18点30分试验指标(Experimentalindex):试验测定的项目或者性状。日增重、产仔数、瘦肉率试验因素(Experimentalfactor):影响试验指标的因素,也称:处理因素,简称因素或因子。

1、可控因素(固定因素):人为可控

2、非控因素(随机因素):不能人为控制试验因素的表示:大写字母A,B,C,…等来表示一、相关术语本文档共166页;当前第15页;编辑于星期二\18点30分因素水平(Leveloffactor):试验因素所处的特定状态或者数量等级。简称水平水平的表示方法:用代表该因素的字母添加下标表示,如A1,A2,B1,B2…试验处理(Treatment):实施在试验单位上的具体项目,简称处理。单因素:试验因素的一个水平多因素:试验因素的一个水平组合一、相关术语本文档共166页;当前第16页;编辑于星期二\18点30分试验单位(Experimentalunit):试验载体,即根据研究目的而确定的观测总体重复(Repetition):一个处理实施在两个或者两个以上的试验单位上,称为处理有重复。试验单位数称为处理的重复数一、相关术语本文档共166页;当前第17页;编辑于星期二\18点30分

方差分析是关于k(k≥3)个样本平均数的假设测验方法,是将总变异按照来源分为处理效应和试验误差,并做出其数量估计。发现各变异原因在总变异中相对重要程度的一种统计分析方法。

二、方差分析的基本原理本文档共166页;当前第18页;编辑于星期二\18点30分

总变异分解为组间变异和组内变异。组内变异是个体差异所致,是抽样误差。组间变异可能由两种原因所致,一是抽样误差;二是处理不同。在抽样研究中抽样误差是不可避免的,故导致组间变异的第一种原因肯定存在;第二种原因是否存在,需通过假设检验作出推断二、方差分析的基本原理本文档共166页;当前第19页;编辑于星期二\18点30分三、数学模型处理A1A2…Ai…Ak

重复x11x21…xi1…xk1x12x22…xi2…xk2

…x1jx2j

…xij

…xkj

…x1nx2n…xin…xkn总和Ti.T1.T2.…Ti.…Tk.平均

……每组具有n个观测值的k组样本数据资料本文档共166页;当前第20页;编辑于星期二\18点30分

例2.1调查了5个不同小麦品系的株高,结果列于表2-1。在这个例子中,只出现“品系”这样一个因素(factor),故称单因素。共有5个不同的品系,我们称品系这一因素共有5个水平(level)。5个品系可以认为是5个总体,表2-1的数据是从5个总体中抽出的5个样本,通过比较这5个样本,判断这5个总体是否存在差异。表2-15个小麦品系株高调查结果株号株高ⅠⅡⅢⅣⅤ12345和64.665.364.866.065.8326.564.565.364.663.763.9322.076.866.367.166.868.5336.571.872.170.069.171.0354.069.268.269.868.367.5343.0平均数65.364.467.370.868.6本文档共166页;当前第21页;编辑于星期二\18点30分

例2.2为了探讨不同窝的动物的出生重是否存在差异,随机选取4窝动物,每窝中均有4只幼仔,结果如下:表2-24窝动物的出生重(克)动物号窝别ⅠⅡⅢⅣ1234和34.733.326.231.6125.833.226.028.632.3120.127.123.327.826.7104.932.931.425.728.0118.0平均数31.45030.02526.22529.500通过对以上数据的分析,判断不同窝别动物出生重是否存在差异。本文档共166页;当前第22页;编辑于星期二\18点30分以上两个例子的共同点是:每个实验都只有一个因素,该因素有a个水平或称为有a个处理(treatment),这样的实验称为单因素实验。从单因素实验的每一处理所得到的结果都是一随机变量Xi。对于a个处理,各重复n次(或者说做n次观察)的单因素方差分析的一般化表示方法见表2-3。表2-3单因素方差分析的典型数据X1X2X3……Xi……Xa

123:j∶nx11

x12x13:x1j:x1nx21

x22x23:x2j:x2nx31xi1xa1x32xi2xa2x33xi3xa3:::x3jxijxaj:::x3nxinxan平均数x1·x2·x3·xi·xa·本文档共166页;当前第23页;编辑于星期二\18点30分每一个观察值可以通过如下常用的所谓线性统计模型(linearstatisticalmodel)描述:其中:xij是在第i

水平(处理)下的第

j

次观察值。μ是对所有观察值的一个参量,称为总平均数(overallmean)。αi是仅限于对第

i

次处理的一个参量,称为第i次处理效应(treatmenteffect)。方差分析的目的,就是要检验处理效应的大小或有无。eij是随机误差成份。本文档共166页;当前第24页;编辑于星期二\18点30分上述模型中,包括两类不同的处理效应。第一类处理效应称为固定效应(fixedeffect),它是由固定因素(fixedfactor)所引起的效应。若因素的a个水平是经过特意选择的,则该因素称为固定因素。例如,几个不同的实验温度,几个不同的化学药物或一种药物的几种不同浓度,几个作物品种以及几个不同的治疗方案和治疗效果等。本文档共166页;当前第25页;编辑于星期二\18点30分在这些情况中,因素的水平是特意选择的,所检验的是关于ai的假设,得到的结论只适合与方差分析中所考虑的那几个水平,并不能将其结论扩展到未加考虑的其它类似水平上。所以上述的那些因素:温度、药物、品种等,称为固定因素。处理这样的因素所用的模型称为固定效应模型(fixedeffectmodel)。例2.1中的5个小麦品系是特意选择的,目的是从这5个品系中,选出最优者,因而“品系”这个因素属于固定因素,所用的模型是固定效应模型。本文档共166页;当前第26页;编辑于星期二\18点30分第二类处理效应称为随机效应(ran-domeffect),它是由随机因素(randomfactor)所引起的效应。若因素的a个水平,是从该因素全部水平的总体中随机抽出的样本,则该因素称为随机因素。从随机因素的a个水平所得到的结论,可以推广到这个因素的所有水平上。处理随机因素所用的模型称为随机效应模型(randomeffectmo-del)。例2.2的动物窝别,是从动物所有可能的窝别中随机选出来的,实验的目的是考查在窝别之间,出生重是否存在差异,因而“窝别”是随机因素。

本文档共166页;当前第27页;编辑于星期二\18点30分有时固定因素和随机因素很难区分,除上述所讲的原则外,还可以从另一角度鉴别。固定因素是指因素水平,可以严格地人为控制。在水平固定之后,它的效应值也是固定的。例如,研究三种温度对胰蛋白酶水解产物的影响。因为温度水平是可以严格控制的,即每一温度水平,在各个重复之间都可以准确地控制在一个固定值上,所以在重复该实验时,水解产物的产量也是固定的。简单地说,在水平(不同温度)固定以后,其效应值(产量)也是固定的。因此,温度是固定因素。

本文档共166页;当前第28页;编辑于星期二\18点30分

随机因素的水平是不能严格地人为控制的,在水平确定之后,它的效应值并不固定。例如,在研究不同农家肥施用量对作物产量的影响试验中,农家肥是因素,不同施用量是该因素的不同水平,作物的产量是它的效应值。由于农家肥的有效成份很复杂,不能像控制温度那样,将农家肥的有效成份严格地控制在某一个固定值上。在重复试验时即使施以相同数量的肥料,也得不到一个固定的效应值。即在因素的水平(施肥量)固定之后,它的效应值(产量)并不固定,因而农家肥是一随机因素。

本文档共166页;当前第29页;编辑于星期二\18点30分三、数学模型本文档共166页;当前第30页;编辑于星期二\18点30分三、数学模型本文档共166页;当前第31页;编辑于星期二\18点30分三、数学模型本文档共166页;当前第32页;编辑于星期二\18点30分四、平方和与自由度的分解全部观测值的总变异可以用总体方差来度量。

方差即均方是离均差平方和除以自由度。把一个实验资料的总变异按变异来源分解为相应的变异,首先要将总平方和与总自由度分解为各个变异来源的相应部分。则考察总方差可以考察处理间方差和处理内的方差本文档共166页;当前第33页;编辑于星期二\18点30分四、平方和与自由度的分解平方和的分解:总平方和=处理间平方和+处理内平方和本文档共166页;当前第34页;编辑于星期二\18点30分四、平方和与自由度的分解自由度的分解:总自由度=处理间自由度+处理内自由度本文档共166页;当前第35页;编辑于星期二\18点30分四、平方和与自由度的分解计算方差:本文档共166页;当前第36页;编辑于星期二\18点30分五、统计假设的显著性检验

——F检验F检验的目的:推断处理间的差异是否存在本文档共166页;当前第37页;编辑于星期二\18点30分五、统计假设的显著性检验

——F检验注意:方差分析中的F检验总是单尾检验,而且为右尾检验本文档共166页;当前第38页;编辑于星期二\18点30分

F越大,越说明组间方差是主要方差来源,因子影响越显著;F越小,越说明随机方差是主要的方差来源,因子的影响越不显著五、统计假设的显著性检验

——F检验本文档共166页;当前第39页;编辑于星期二\18点30分

eg.某水产研究所为了比较四种不同配合饲料对鱼的饲喂效果,选取了条件基本相同的鱼20尾,随机分成4组,投喂不同饲料,经1个月以后,各组鱼的增重(g)资料如下表,试进行方差分析饲料重复A1A2A3A413192482212702279257236308331826827329042842792492455359262258286

分析:1个因素,4个水平,5个重复的方差分析本文档共166页;当前第40页;编辑于星期二\18点30分

解:本文档共166页;当前第41页;编辑于星期二\18点30分本文档共166页;当前第42页;编辑于星期二\18点30分不同饲料饲喂鱼增重的方差分析表本文档共166页;当前第43页;编辑于星期二\18点30分二、固定效应模型在固定效应模型中,ai是处理平均数与总平均数的离差,且是个常量,因而

要检验a个处理效应的相等性,就要ai判断各是否等于0。若各ai都等于0,则各处理效应之间无差异。因此,零假设为:备择假设为:HA:ai≠0(至少有1个i)。若接受H0,则不存在处理效应,每个观察值都是由平均数加上随机误差所构成。若拒绝H0,则存在处理效应,每个观察值是由总平均数、处理效应和误差三部分构成。本文档共166页;当前第44页;编辑于星期二\18点30分

例2.1调查了5个不同小麦品系的株高,结果列于表2-1。在这个例子中,只出现“品系”这样一个因素(factor),故称单因素。共有5个不同的品系,我们称品系这一因素共有5个水平(level)。5个品系可以认为是5个总体,表2-4的数据是从5个总体中抽出的5个样本,通过比较这5个样本,判断这5个总体是否存在差异。表2-15个小麦品系株高调查结果株号株高ⅠⅡⅢⅣⅤ12345和64.665.364.866.065.8326.564.565.364.663.763.9322.076.866.367.166.868.5336.571.872.170.069.171.0354.069.268.269.868.367.5343.0平均数65.364.467.370.868.6本文档共166页;当前第45页;编辑于星期二\18点30分解:在方差分析中,为了简化计算可以用编码法。方差分析的编码,必须将全部数据均减去同一个共同的数。在例2.1中,每一个xij都减去65,列成下表,株号品系ⅠⅡⅢⅣⅤ12345―0.40.3―0.21.00.8-0.50.3―0.4-1.3-1.12.81.32.11.83.56.87.15.04.16.04.23.24.83.32.5总和xi·x2i·∑x2ij1.52.251.93-3.09.003.411.5132.2529.4329.0841.0174.4618.0324.068.06571308.50277.28本文档共166页;当前第46页;编辑于星期二\18点30分先计算校正项C再计算本文档共166页;当前第47页;编辑于星期二\18点30分将以上结果列成方差分析表(见表2-5):表2-5

不同小麦品系株高方差分析表

变差来源平方和自由度均方

F品系间误差131.7415.5842032.720.7841.95**总和147.3224**a=0.01当分子自由度为4,分母自由度为20时,F4,20,0.05=2.87,F4,20,0.01=4.43,F>F0.01。因此,不同小麦品系的株高差异极显著。习惯上用“*”表示在α=0.05水平上差异显著,用“**”表示在α=0.01水平上差异显著,常常称为差异“极显著”(highlysignificant)。本文档共166页;当前第48页;编辑于星期二\18点30分三、随机效应模型在实验中,经常回遇到某个因素有许多可能的水平,若参加实验的a个水平,是从该因素的水平总体中随机选出的,那么这一因素称为随机因素。其方差分析是通过随机选取的a个水平对该因素的水平总体做推断。要求水平的总体是无暇总体,即使不是无限总体,也应相当大,以至于可以认为是无限总体。例2.2中动物的“窝”是随机因素,每一窝是一个水平,这种动物所有的窝构成一水平总体。从该总体中随机选择4个水平(4窝)做实验,实验的目的是希望由这4窝动物去推断该种动物所有不同的窝别之间幼仔出生重是否存在差异。本文档共166页;当前第49页;编辑于星期二\18点30分固定效应模型中∑ai=0的假设在这里不再适用。在随机模型中,对单个处理效应的检验是无意义的,所要检验的是关于ai的变异性的假设,因而,

H0:sa2=0

HA:sa2>0如果接受H0:sa2=0,则表示处理之间没有差异;若拒绝H0而接受HA:sa2>0,则表示处理之间存在差异,方差分析的做法仍然是将总平方和分解,

本文档共166页;当前第50页;编辑于星期二\18点30分自由度做同样分解,由此可得出MSt和MSe。然后用F单侧检验(具dft,dfe

自由度),方差分析的程序与固定效应模型的方差分析程序完全一样,但是结论不同。随机效应模型适用于全部水平的总体,而固定效应模型只适用于所选水平的总体。下面计算例2.2,并对结果加以解释。本文档共166页;当前第51页;编辑于星期二\18点30分例2.2为了探讨不同窝的动物的出生重是否存在差异,随机选取4窝动物,每窝中均有4只幼仔,结果如下:表2-24窝动物的出生重(克)动物号窝别ⅠⅡⅢⅣ1234和34.733.326.231.6125.833.226.028.632.3120.127.123.327.826.7104.932.931.425.728.0118.0平均数31.45030.02526.22529.500本文档共166页;当前第52页;编辑于星期二\18点30分4.73.2-2.92.93.3-4.0-6.71.4-3.8-1.4-2.2-4.31.62.3-3.3-2.0总和

c

i·5.800.10-15.10-2.00

c

2i·

33.640.01228.014.00

∑c2ij

49.9833.4969.0332.86-11.20265.66185.36解:将表2-2中的每一个数值都减去30,列成下表,

本文档共166页;当前第53页;编辑于星期二\18点30分本文档共166页;当前第54页;编辑于星期二\18点30分将上述结果列成方差分析表:表2-6动物出生重方差分析变差来源平方和自由度均方F窝别误差58.575118.94531219.5259.9121.97总和177.5215查表得知,F3,12,0.05=3.49,因F<F0.05,所以差异不显著。通过对4窝动物出生重的调查,可以推断不同窝别动物的出生重没有显著差异。本文档共166页;当前第55页;编辑于星期二\18点30分Excel方差分析Office的默认安装中没有“数据分析”要指定才会安装。一旦安装,“工具”菜单下出现“数据分析”条,可以用它来方便的做方差分析等统计推断分析。可通过运行Analysis中的模板文件

ANALYS32.XLL调入此宏本文档共166页;当前第56页;编辑于星期二\18点30分加载数据分析如“工具”菜单下没有“数据分析”单击“加载宏”本文档共166页;当前第57页;编辑于星期二\18点30分Excel解方差分析选一批单元格输入原始数据;本文档共166页;当前第58页;编辑于星期二\18点30分Excel解方差分析选“工具”→“数据分析”;本文档共166页;当前第59页;编辑于星期二\18点30分Excel解方差分析选“工具”→“数据分析”→“单因素方差分析”本文档共166页;当前第60页;编辑于星期二\18点30分Excel解方差分析“单因素方差分析”对话框中:

输入区域,分组方式,输出选项本文档共166页;当前第61页;编辑于星期二\18点30分Excel解方差分析“单因素方差分析”对话框中:填入信息后单击“确定”按钮本文档共166页;当前第62页;编辑于星期二\18点30分Excel解方差分析分析结果本文档共166页;当前第63页;编辑于星期二\18点30分Excel解方差分析方差分析结果表中各项目的含义SS平方和df自由度MS均方F及FcritF值及F临界值,Fcrit=FINV(a,df1,df2)P-valueF分布概率P-value=FDIST(F,df1,df2)本文档共166页;当前第64页;编辑于星期二\18点30分

F检验如果否定了H0,接受了HA,表明试验的总变异主要来源于处理间的变异六、多重比较

多重比较:假设对一个固定效应模型经过方差分析之后,结论是拒绝H0,处理之间存在差异。但这并不说在每对处理之间多存在差异。为了弄清究竟在哪些对之间存在显著差异,哪些对之间无显著差异,必须在个处理平均数之间一对一对地做比较,这就是多重比较。即:多个平均数的相互比较本文档共166页;当前第65页;编辑于星期二\18点30分六、多重比较

常用的:

1、最小显著差数法(LSD法)

2、最小显著极差法(LSR法)

—新复极差检验(SSR法)

—q检验LSD称为最小显著差数(leastsignificantdifference)它的计算方法简述如下:本文档共166页;当前第66页;编辑于星期二\18点30分对于任意两组数据的平均数,差数(x1-x2)的差异显著性检验,可以用成组数据t检验,当n1=n2时最小显著差数法(LSD法)样本平均数的差数样本平均数差数的标准误本文档共166页;当前第67页;编辑于星期二\18点30分其中MSe为误差方差,即处理内方差,n为每一处理的观察次数,于是具k(n-1)自由度,当t>t0.05时差异显著,当t>t0.01时差异极显著。因此,当差异显著时最小显著差数法(LSD法)本文档共166页;当前第68页;编辑于星期二\18点30分并可得到,当时差异显著。t0.05√2MSe/n

称为最小显著差数,记为LSD。每一对平均数的差与LSD比较,当│x1-x2│>LSD时,差异显著;否则差异不显著。LSD是一种很有用的检验方法,计算起来很方便,也容易比较。但是它有难以克服的缺点,即这种比较方法将会加大Ⅰ型错误的概率。最小显著差数法(LSD法)本文档共166页;当前第69页;编辑于星期二\18点30分LSD法的步骤:最小显著差数法(LSD法)1、计算平均数差数标准误2、由t逆函数(TINV)和平均数差数标准误计算出达到差异显著的最小差数,记为LSD3、将全部平均数从大到小依次排列,并比较若即为在给定的水平上差异显著,反之亦然本文档共166页;当前第70页;编辑于星期二\18点30分说明实质上是t

检验,但统一了标准误简单、灵敏(降低了检验标准、夸大了差异的显著性)I类错误概率增大,控制单次比较的I类错误时应用无法控制所有比较的总体I类错误最小显著差数法(LSD法)本文档共166页;当前第71页;编辑于星期二\18点30分2、求解达到差异显著的最小差数(LSD)临界值:t0.05(16)=2.120,t0.01(16)=2.921

LSD0.05(16)=2.120*14.622=31.0

LSD0.01(16)=2.921*14.622=42.73、将全部平均数从大到小依次排列,并比较本文档共166页;当前第72页;编辑于星期二\18点30分excel数据的排序工具数据分析排序与百分比本文档共166页;当前第73页;编辑于星期二\18点30分excel数据的排序本文档共166页;当前第74页;编辑于星期二\18点30分处理平均数A1311.864.4**49.0**32.2*A4279.632.2*16.8nsA2262.815.4nsA3247.4四种饲料饲喂鱼增重差异显著性(LSD检验,梯形法)4、分析结果:A1饲料对鱼增重效果极显著高于A3和A2,显著高于A4;A4饲料对鱼增重效果显著高于A3;A4和A2,A2和A3饲料对鱼增重效果没有显著差异本文档共166页;当前第75页;编辑于星期二\18点30分四种饲料饲喂鱼增重差异显著性(LSD检验,字母标记法)处理平均数差异显著性0.050.01A1A4A2A3311.8279.8262.8247.4(1)在最大的平均数上标字母a——A1行标注aa(2)将该平均数与以下各平均数相比,凡相差不显著的(<LSD)都标上字母a,直到某个与相差显著的则标字母b——(A1-A4)=311.8-279.8=32.0>LSD0.05,则A4标bb(3)再以标有b的平均数为标准,与各个比它大的平均数比较,凡差数差异不显著的在字母的右边加标字母b,然后再以标b的最大平均数为标准与以下未标字母的平均数相比,凡相差不显著的都标上字母b,直到某个与相差显著的则标字母c——往上:(A4-A1)是已经比较了;往下(A4-A2)=17.0,标b,(A4-A3)=32.4,标cbc(4)以此重复,直到最小的平均数标记字母——以A3为标准,往上:A3与A2相比无显著差异,故在A2行b右边标注c,A3与A4已比较了cAABBB

总结:差异不显著标同一字母,差异显著标不同字母本文档共166页;当前第76页;编辑于星期二\18点30分四种饲料饲喂鱼增重差异显著性(LSD检验,字母标记法)

判断:凡有一个相同标记字母的即为差异不显著,凡具有不同标记字母的即为差异显著分析结果:A1饲料对鱼增重效果极显著高于A3和A2,显著高于A4;A4饲料对鱼增重效果显著高于A3;A4和A2,A2和A3饲料对鱼增重效果没有显著差异本文档共166页;当前第77页;编辑于星期二\18点30分把平均数的差异看成是平均数的极差(range)根据极差范围内所包括的处理数(称为秩次距)k的不同,而采用不同的检验尺度叫做最小显著极差LSR秩次距是指当平均数由大到小排序后,相比较的两个平均数之间(含这两个平均数)包含的平均数个数I类错误下降、工作量加大最小显著极差法(LSR法)本文档共166页;当前第78页;编辑于星期二\18点30分为了克服LSD法的缺点,Duncan(1955)提出了Duncan多范围检验(Duncanmultipletest)。检验方法如下:首先,将需要比较的a个平均数依次排列好,使之并将每一对

x

之间的差(范围)列成下表

aa-1…321x1-xa

x1-xa-1…x1-x3

x1-x22x2-xa

x2-xa-1…x2-x3

∶a-2xa-2-xa

xa-2-xa-1a-1xa-1-xa注:表中的x均为x

新复极差法本文档共166页;当前第79页;编辑于星期二\18点30分Duncan检验与LSD的一个明显不同是Duncan检验中,不同对平均数的差有不同的临界值Rk

。其中本文档共166页;当前第80页;编辑于星期二\18点30分

ra=ra(k,df)的值可以从附表“多重比较中的Duncan表”中查出:表的最左边一列是误差自由度df=a(n-1),最上一列为k值,表体为ra

(k,df)。表中的

k

值是相比较的两个平均数之间所包含的平均数的个数。如两个要比较的平均数相邻时k=2,两个要比较的平均数中间隔一个平均数时k=3,依此类椎。因为平均数共有a个,所以需查出a一1个ra

,分别乘以S,得:本文档共166页;当前第81页;编辑于星期二\18点30分先从表的第一行最左边的一个差x1-xa开始比较。若x1-xa>Ra,则x1与xa的差异显著;否则差异不显著,然后比较下一个。若x1-xa-1>Ra一1,则x1与xa-1差异显著,否则差异不显著,···。第一行比较完之后用同样的方法比较第二行。先从第二行最左边的一个差x2-xa开始,在x2到xa这个范围内共包含a-1个平均数,因此x2-xa应与Ra-1比较,若x2-xa>Ra-1,则差异显著,否则不显著,···。第二行比较完再比较第三行,第四行,···。直到所有平均数的差均与其相应的Rk比较完为止。对于显著的标上“*”,极显著的标上“**”。本文档共166页;当前第82页;编辑于星期二\18点30分新复极差法此法是以统计量SSR的概率分布为基础的。SSR值由下式求得本文档共166页;当前第83页;编辑于星期二\18点30分SSR检验步骤计算出平均数标准误;由自由度dfe、秩次距M(所含平均数的个数)查临界SSR值(附表6),计算最小显著极差LSR0.05,M,LSR0.01,M;将平均数多重比较表中的各极差与相应的最小显著极差LSR0.05,M,LSR0.01,M比较,作出统计推断本文档共166页;当前第84页;编辑于星期二\18点30分有关采用excel自定义函数来生成SSR值可参见文献本文档共166页;当前第85页;编辑于星期二\18点30分q检验法此法是以统计量q的概率分布为基础的。q值由下式求得q值分布表附表7其余与SSR检验法一样本文档共166页;当前第86页;编辑于星期二\18点30分

例6.2:

测定东北、内蒙古、河北、安徽、贵州5个地区黄鼬冬季针毛的长度(mm),每个地区随机抽取4个样本,测定结果于下表,试比较各个地区黄鼬针毛长度的差异显著性地区东北内蒙古河北安徽贵州132.029.225.523.322.3232.827.426.125.122.5331.226.325.825.122.9430.426.726.725.523.7

分析:1个因素,5个水平,4个重复的方差分析本文档共166页;当前第87页;编辑于星期二\18点30分

解:“excel”-“工具”—“数据分析”—“单因素方差分析”由分析结果知:P<0.01,说明5个地区黄鼬冬季针毛长度差异显著本文档共166页;当前第88页;编辑于星期二\18点30分q检验1、计算平均数标准误2、查附表7,当dfe=15,M=2,q0.05=3.01,q0.01=4.17,则当M=3,M=4,M=5时按同理计算,结果列表本文档共166页;当前第89页;编辑于星期二\18点30分不同地区黄鼬冬季针毛长度的LSR值(q检验)地区平均数差异显著性0.050.01东北内蒙古河北安徽贵州31.6027.4026.0324.7522.85abbcABBC3、不同地区黄鼬冬季针毛长度的差异显著(q检验)dCcCM2345q0.053.013.674.084.37q0.014.174.835.255.56LSR0.051.4001.7071.8972.032LSR0.011.9392.2462.4412.585本文档共166页;当前第90页;编辑于星期二\18点30分4、结果表明:东北与其他地区;内蒙古和安徽、贵州黄鼬冬季针毛长度差异均达极显著水平。河北和贵州,安徽和贵州差异达显著水平。内蒙古和河北,河北和安徽差异不显著。

LSD检验的分析结果:东北与其他地区;内蒙古和安徽、贵州;以及河北和贵州黄鼬冬季针毛长度差异均达极显著水平。安徽和贵州差异达显著水平。内蒙古和河北,河北和安徽差异不显著。本文档共166页;当前第91页;编辑于星期二\18点30分多重比较有多种方法,不同方法用途不同、比较的结果不同总结:多重比较尺度大小:LSD法≤SSR法≤q检验法

(原因:SSR和q检验是针对不同秩次距的平均数极差采用不同的显著尺度,充分考虑到同一总体抽样时,平均数的极差将随秩次距的增大而增大这一现象)对试验要求严格时,用q检验法较为妥当生物试验中,由于试验误差较大,常采用新复极差法(SSR法)应该注明利用的是何种多重比较方法本文档共166页;当前第92页;编辑于星期二\18点30分1、多个实验组与一个对照组均数间两两比较

若目的是减小第II类错误,最好选用最小显著差法LSD

;若目的是减小第I类错误,最好选用SSR法。总结:多重比较2、多个样本均数间两两比较

常用q检验的方法本文档共166页;当前第93页;编辑于星期二\18点30分第二节单因素方差分析本文档共166页;当前第94页;编辑于星期二\18点30分单因素方差分析分析目的:判断某试验因素各水平的相对效果分类:根据组内观测数目(重复数)是否相同1、组内观测次数相等的方差分析2、组内观测次数不等的方差分析本文档共166页;当前第95页;编辑于星期二\18点30分各处理重复次数不等的方差分析Excel中对应函数:求和:SUM()求幂:POWER(x,power)求平方和:SUMSQ()本文档共166页;当前第96页;编辑于星期二\18点30分

例题6.3.用某种小麦种子进行切胚乳试验,试验分为3种处理:整粒小麦(I),切去一半胚乳(II),切去全部胚乳(III),同期播种于条件比较一致的花盆内,出苗后每盆选留2株,成熟后进行单株考种,每株粒重(g)结果如下表,试进行方差分析

分析:1个因素,10个水平,3个重复的方差分析本文档共166页;当前第97页;编辑于星期二\18点30分

解:“excel”-“工具”—“数据分析”—“单因素方差分析”

结果分析:3种处理的单株粒重无显著差异本文档共166页;当前第98页;编辑于星期二\18点30分第三节二因素方差分析本文档共166页;当前第99页;编辑于星期二\18点30分

两因素试验资料的方差分析是指对试验指标同时受到两个试验因素作用的试验资料的方差分析两因素方差分析主效应:各试验因素的相对独立作用,简称主效或效应互作:某一因素在另一因素的不同水平上所产生的效应不同,则二因素间存在交互作用,简称互作。互作效应实际是由于两个或多个试验因素的相互作用而产生的效应本文档共166页;当前第100页;编辑于星期二\18点30分互作分类:

1、正的交互作用

2、负的交互作用

3、无交互作用:即互作效应为零。没有交互作用的因素是相互独立的因素,此时,不论在某个因素哪个水平,另一因素的效应都是相等的互作效应本文档共166页;当前第101页;编辑于星期二\18点30分互作与主效应的关系:

因素间的交互作用显著与否关系到主效应的利用价值

1、若交互作用不显著:各因素的效应可以累加,各因素的最优水平组合起来,即为最优的处理组合

2、若交互作用显著:各因素的效应就不能累加,最优处理组合的选定应根据各处理组合的直接表现选定

3、有时候交互作用相当大,甚至可以忽略主效应互作效应本文档共166页;当前第102页;编辑于星期二\18点30分二因素方差分析分析目的:判断对因素主效应和交互作用分类:1、无重复观测值的二因素方差分析2、具有重复观测值的二因素方差分析前提条件:两因素之间无交互作用本文档共166页;当前第103页;编辑于星期二\18点30分前提二因素无互作,每个处理可不设重复数据假定A因素有a个水平、B因素有b个水平,每个水平组合只有一个观测值,全试验共有ab个观测值无重复观测值的二因素方差分析本文档共166页;当前第104页;编辑于星期二\18点30分因素A因素BB1B2…Bb和平均

A1x11x12…x1bT1.

A2x21x22…x2bT2.…………………

Aaxa1xa2…xabTa和T.1T.2…T.bT平均数…无重复观测值的二因素数据资料A因素每个水平看作b个重复

B因素每个水平看作a个重复本文档共166页;当前第105页;编辑于星期二\18点30分模型假定每个观察值为一个从平均值等于

ij

的群体随机、独立的抽样。共有ab

个样本。处理效应和区组效应是加性的。处理和区组没有互作数据的方差相等eij为随机误差,相互独立,且服从N(0,2)本文档共166页;当前第106页;编辑于星期二\18点30分数学模型=总体平均ai=第i

个处理效应,i.

–bj=第j个区组的效应,.j

–eij=

随机误差项,xij

ij本文档共166页;当前第107页;编辑于星期二\18点30分方差剖分无重复观测值二因素的试验A因素的每个水平有b次重复,B因素的每个水平有a次重复,每个观测值同时受到A、B两因素及随机误差的作用。因此全部ab个观测值的总变异可以剖分为A因素水平间变异、B因素水平间变异及试验误差三部分自由度也相应剖分本文档共166页;当前第108页;编辑于星期二\18点30分平方和计算本文档共166页;当前第109页;编辑于星期二\18点30分各项方差计算本文档共166页;当前第110页;编辑于星期二\18点30分ANOVA表变异来源SSdfMSFc.v.A因素SSAa-1B因素SSBb-1误差SSe(a-1)(b-1)和SSTab-1本文档共166页;当前第111页;编辑于星期二\18点30分例题6.4:

将一种生长激素配成M1,M2,M3,M4,M5五种浓度,并用H1,H2,H3三种时间浸渍某大豆品种的种子,出苗45天后得到各处理每一植株的平均干物重(g),结果如下表,试作方差分析。

分析:2个因素,无重复的方差分析本文档共166页;当前第112页;编辑于星期二\18点30分

解:“excel”-“工具”—“数据分析”—“无重复双因素方差分析”本文档共166页;当前第113页;编辑于星期二\18点30分

F检验结果表明:激素处理浓度之间的F值大于F0.01,达到极显著水平;激素处理时间之间的F值未达到显著水平,说明不同激素浓度对大豆干物重有极显著的影响。

多重比较(用SSR检验):激素处理浓度之间的效应达到极显著水平,而激素处理时间之间的F值未达到显著水平,所以只对5种浸渍浓度进行多重比较。本文档共166页;当前第114页;编辑于星期二\18点30分

计算浓度之间的平均数标准误:

查SSR值表(附表6),得到在dfe=8时,不同秩次距下的SSR值和LSR值本文档共166页;当前第115页;编辑于星期二\18点30分不同激素浓度大豆干物重多重比较的LSR值(SSR检验)浓度平均数差异显著性0.050.01M1M2M4M5M313.6712.339.673.673.00aabcAABCM2345SSR0.053.263.403.483.52SSR0.014.754.945.065.14LSR0.051.481.551.581.60LSR0.012.162.252.302.34不同激素浓度大豆干物重平均数的差异显著(SSR检验)cC本文档共166页;当前第116页;编辑于星期二\18点30分

多重比较结果表明:

5种生长激素浓度度对大豆干物重有极显著的影响。

M1与M2,M5与M3之间差异不显著;除此之外,其他激素浓度之间的大豆干物重均达到极显著差异。

5种激素浓度中,M1和M2的处理效果较好本文档共166页;当前第117页;编辑于星期二\18点30分如果两个因素存在互作将互作项和误差项的平方和自由度分解有互作试验设计设重复有重复观测值的二因素方差分析本文档共166页;当前第118页;编辑于星期二\18点30分上面讲过,因素可分作固定因素和随机因素。在两因素实验中,当两个因素都是固定因素时,称为固定模型(fixedmodel);两个因素均为随机因素时,称为随机模型(randommodel);一个因素是固定因素,另一个因素是随机因素时,称为混合模型(mixedmodel)。这三种模型虽然在计算方法上没有多大不同,但在检验以及对结果解释上却截然不同。尤其是在两因素之间存在交互作用时,不同类型模型的区别就更明显。本文档共166页;当前第119页;编辑于星期二\18点30分

两因素实验的典型设计是:假定A因素有a水平,B因素有b水平,则每一次重复都包括ab次实验,并设实验重复次数n次,χijk表示A因素的第i水平,B因素第j水平和第k次重复的观察值。数据将以下表的形式出现。表2-7中A和B可以是固定因素,也可以是随机因素,因而引出三种不同的统计模型。本文档共166页;当前第120页;编辑于星期二\18点30分表2-7两因素交互分组实验的一般格式因素Bj=1,2,…,b总计B1B2…Bb因素Ai∥1,2,∶,aA1Χ111Χ112∶Χ11nΧ121Χ122∶Χ12n…Χ1b1Χ1b2∶Χ1bnΧ1··A2Χ211Χ212∶Χ21nΧ221Χ222∶Χ22n…Χ2b1Χ2b2∶Χ2bnΧ2··∶∶∶…∶∶AaΧa11Χa12∶Χa1nΧa21Χa22∶Χa2n…Χab1Χab2∶ΧabnΧa··总计Χ·1·Χ·2·…Χ·b·Χ1··本文档共166页;当前第121页;编辑于星期二\18点30分表2-7中的各种符号做如下说明:ci··表示A因素第i水平的所有观察值的和;c·j·表示B因素第j水平的所有观察值的和;cij·表示A的第i水平和B的第j水平的所有观察值的和;c···表示所有观察值的综合。本文档共166页;当前第122页;编辑于星期二\18点30分数学模型本文档共166页;当前第123页;编辑于星期二\18点30分平方和的计算本文档共166页;当前第124页;编辑于星期二\18点30分自由度计算本文档共166页;当前第125页;编辑于星期二\18点30分各项方差计算本文档共166页;当前第126页;编辑于星期二\18点30分F检验本文档共166页;当前第127页;编辑于星期二\18点30分固定模型本文档共166页;当前第128页;编辑于星期二\18点30分两因素固定模型方差分析表如下:表2-8固定模型方差分析表(因素A、B固定型)变差来源平方和自由度均方

F因素A因素B交互作用AB误差SSASSBSSAB

SSe

a-1b-1(a-1)(b-1)ab(n-1)

MSA

MSB

MSAB

MSe

MSA/MSeMSB/MSeMSAB/MSe总和

SSTabn-1本文档共166页;当前第129页;编辑于星期二\18点30分

例2.3为了从三种不同原料和三种不同发酵温度中,选出最适的条件,设计了一个两因素试验。并得到以下结果(表2-9):原料种类A温度B30℃35℃40℃1234149232547595040433553501113252443383336553847446222618822181430332619本文档共166页;当前第130页;编辑于星期二\18点30分在这个试验中,温度和原料均为固定因素。每一处理有4次重复。因此可按上面叙述过的方法分析。将表中的每一数字均减去30,列成表2-10.1,由表2-10.1中,可以计算出及本文档共166页;当前第131页;编辑于星期二\18点30分表2-10.1发酵实验方差分析计算表原料A温度Bcij1cij2cij3cij4cij·c2ij·∑c2ijk12330354030354030354011-19-241713-221325019-1718298-8583-7-5-4203-122317-4-5-6-12106-162014-1118-47-487630-586164-12324220923045776900336437214096144556711800163027894811231174146∑=84228387366本文档共166页;当前第132页;编辑于星期二\18点30分利用χij·列列成表2-10.2。表2-10.2发酵实验方差分析表温度Bci··c2i··

303540原1料2

A318-47-487630-586154-12-77481135929230412769c·j·

c2·j·

15547-11824025220913924844015821002本文档共166页;当前第133页;编辑于星期二\18点30分由表2-10.2中可以计算出本文档共166页;当前第134页;编辑于星期二\18点30分列成方差分析表:表2-11发酵实验方差分析表变差来源平方和自由度均方

F

原料A温度BAB误差1554.173150.58808.751656.5022427777.091575.29202.1961.3512.67**25.68**3.30*总和7170.0035**a=0.01*a=0.05原料和温度在α=0.01水平上拒绝H0;交互作用在α=0.05水平上拒绝H0。因此酒精的产量不仅与原料与温度有关,而且与两者的交互作用也有关。本文档共166页;当前第135页;编辑于星期二\18点30分随机模型本文档共166页;当前第136页;编辑于星期二\18点30分表2-14随机效应模型方差分析表(因素A、B随机型)变差来源平方和自由度均方F因素A因素B交互作用AB误差SSASSBSSABSSea-1b-1(a-1)(b-1)ab(n-1)MSAMSBMSABMSeMSA/MSABMSB/MSABMSAB/MSe

总和SSTabn-1随机效应模型的方差分析表如下:本文档共166页;当前第137页;编辑于星期二\18点30分

例2.6为了研究不同地块中施用不同数量农家肥对作物产量的影响,设计了一个两因素试验。试验结果列在下表中。地块B一号地二号地三号地施肥量A100kg200kg300kg400kg8.698.478.888.7210.8210.8611.1611.428.808.749.689.5411.0010.9210.9711.139.499.379.399.5911.0711.0111.0010.90

解前面已经说过,这是一随机模型。随机模型的各项平方和的计算与固定模型是一样的。将上表中的cijk每一个均减去9.5列成下表:本文档共166页;当前第138页;编辑于星期二\18点30分表2-15.1作物产量方差分析计算表施地肥量块cij1cij2cij·c

2ij·∑c2ijk一100二三-0.81-0.70-0.01-1.03-0.76-0.13-1.84-1.46-0.143.38562.13160.01961.71701.06760.0170一200二三-0.620.18-0.11-0.780.040.09-1.400.22-0.021.96000.04840.00040.99280.03400.0202一300二三1.321.501.571.361.421.512.682.923.087.18248.52049.48643.59204.26644.7450一400二三1.661.471.501.921.631.4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论