平行四边形教案7篇_第1页
平行四边形教案7篇_第2页
平行四边形教案7篇_第3页
平行四边形教案7篇_第4页
平行四边形教案7篇_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页平行四边形教案7篇

平行四边形教案篇1

教学内容:

教科书第79~81页

教学目标:

1.使同学通过探究,理解和掌控平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观测、比较活动,初步认识转化的方法,培育同学的观测、分析、概括、推导技能,进展同学的空间观念。

教学过程:

一、导入

1.观测主题图〔有条件的地方可做成多媒体课件出示〕,让同学找一找图中有哪些学过的图形。

2.观测图中学校门前的两个花坛,说一说这两个花坛都是什么外形的?怎样比较两个花坛的大小?你会计算它们的面积吗?

3.引入学习内容:长方形的面积我们已经会计算了,今日我们讨论平行四边形面积的计算。

板书课题:平行四边形的面积

二、平行四边形面积计算

1.用数方格的方法计算面积。

〔1〕用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中〔见教材第80页表格〕。

〔2〕同桌合作完成。

〔3〕汇报结果,可用投影展示同学填好的表格。

〔4〕观测表格的数据,你发觉了什么?

通过同学争论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

2.推导平行四边形面积计算公式。

〔1〕引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是到处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

同学争论,鼓舞同学大胆发表看法。

〔2〕归纳同学看法,提出:通过数方格我们已经发觉这个平行四边形的面积等于底乘高,是不是全部的平行四边形都可以用这个方法计算呢?需要验证一下。由于我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

同学用课前预备的平行四边形和剪刀进行剪和拼,老师巡察。

请同学演示剪拼的过程及结果。

老师用课件或教具演示剪—平移—拼的过程。〔如教材第81页的`图示〕

〔3〕我们已经把一个平行四边形变成了一个长方形,请同学们观测拼出的长方形和原来的平行四边形,你发觉了什么?

小组争论。可以出示争论题:

①拼出的长方形和原来的平行四边形比,面积变了没有?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

③能依据长方形面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,老师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,

这个长方形的宽与平行四边形的高相等,

由于长方形的面积=长×宽,

所以平行四边形的面积=底×高。

3.老师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

三、巩固和应用

1.出例如1。读题并理解题意。

同学试做,沟通作法和结果。

2.争论:下面两个平行四边形的面积相等吗?为什么?

平行四边形教案篇2

一、教学内容:P72

二、教学目标:

1、引导同学直观地认识平行四边形。

2、培育同学动手操作和实践技能。

三、教学预备:

长方形框架、七巧板

四、教学过程:

〔一〕复习导入

〔二〕探究新知

1、做一做

〔1〕老师演示:出示长方形框架

这是什么图形,然后拉动,变成新外形。提示同学仔细观测。

〔2〕同学动手操作,做一做。

〔3〕认识平行四边形

A、认识平行四边形实物〔观测新图形〕

B、认识平行四边形平面图

2、想一想

平行四边形与长方形的联系:对边相等,四个角不是直角,有的是锐角,有的`是直角。

3、说一说

说一说平常见到的平行四边形

4、画一画

5、拼一拼〔用七巧板〕

〔三〕全课

今日我们学习了什么知识,用什么方法认识平行四边形。

〔四〕作业

在现实中查找平行四边形

平行四边形教案篇3

教学内容:教材第16-15页例2及“想想做做”1—5题。

教学目标:

1.使同学通过观测、比较、操作等实践活动,感知平行四边形的特点,初步认识平行四边形,能指出平行四边形和围出平行四边形。

2.使同学经受从直观、操作中抽象出平行四边形的过程,形成平行四边形的直观表象,并能操作再现平行四边形的外形,积累通过多种感官学习平面图形的阅历,进展初步的空间观念。

3.使同学逐步形成参加数学活动的意识,培育独立思索、主动沟通的学习习惯。

教学重点:

平行四边形的直观认识

教学难点:

平行四边形的直观表象

教具或学具预备:

三角尺、钉子板、小棒、长方形木框〔教具〕

教学过程:

一、直观认识

1.观测图形:三角形、四边形、五边形、六边形

你预备怎样把这些图形分类?

说明:有四条边的图形是四边形,四边形有各式各样的外形,今日我们认识一种非常的四边形〔出例如2〕

2.学习例2

1.这是生活里常见的情境。你能在这些情境中找出四边形并用手沿四条边指一指吗?小伙伴在课本例2的图上用笔描出这样的四边形。

沟通:生活里肯定看到过这样的四边形,你还在哪里看到过?

2.操作

请同学们拿出两个完全一样的'三角尺。你能拼出这样的四边形吗?

沟通:把你的拼法介绍给大家。

说明:小伙伴都拼出了生活里见到的这样的四边形,像这样的四边形是平行四边形〔板书课题〕

3.抽象出图形

引导:像这样的图形是平行四边形,你能在钉子板上围一个平行四边形吗?

同学操作,老师引导,让同学沟通围法,老师适当引导〔对边的方向、长短完全一样〕。

二、练习巩固:

1.想想做做第1题

同学独立完成。沟通:哪些是平行四边形?第一个为什么不是,说说你的理由。

2.想想做做第3题

同学画图,老师巡察指导。

沟通所画的平行四边形,指出这些图形虽然大小不同,位置外形不一

样,但都是平行四边形。

3.想想做做第4题

同桌合作,动手操作,老师指导。

沟通操作方法,想想平行四边形对边的要求。

4.想想做做第5题

演示,让同学留意观测,你有什么发觉。

说明:一个长方形,不管怎样拉,虽然外形、大小会发生改变,但都是平行四边形。

三、回顾总结:

今日我们学习了什么?请你说说认识平行四边形的过程。

你有什么收获和体会。

四、布置作业

《补充习题》第页。

平行四边形教案篇4

教学目的:

1、深入了解平行四边形的不稳定性;

2、理解两条平行线间的距离定义〔区分于两点间的距离、点到直线的距离〕

3、娴熟掌控平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;

4、在教学中渗透事物总是相互联系又相互区分的辨证唯物主义观点,体验“非常--一般--非常”的辨证唯物主义观点。

教学重点:

平行四边形的性质和判定。

教学难点:

性质、判定定理的运用。

教学程序:

一、复习创情导入

平行四边形的性质:

边:对边平行〔定义〕;对边相等〔定理2〕;对角线相互平分〔定理3〕夹在平行线间的平行线段相等。

角:对角相等〔定理1〕;邻角互补。

平行四边形的判定:

边:两组对边平行〔定义〕;两组对边相等〔定理2〕;对角线相互平分〔定理3〕;一组对边平行且相等〔定理4〕;两组对角分别相等〔定理1〕

二、授新

1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:

2、自学质疑:自学课本P79-82页,并提出疑难问题。

3、分组争论:争论自学中不能解决的问题及同学提出问题。

4、反馈归纳:依据预习和争论的效果,进行点拨指导。

5、尝试练习:完成习题,解答疑难。

6、深化创新:平行四边形的性质:

边:对边平行〔定义〕;对边相等〔定理2〕;对角线相互平分〔定理3〕夹在平行线间的平行线段相等。

角:对角相等〔定理1〕;邻角互补。

平行四边形的判定:

边:两组对边平行〔定义〕;两组对边相等〔定理2〕;对角线相互平分〔定理3〕;一组对边平行且相等〔定理4〕;两组对角分别相等〔定理1〕

7、推举作业

1、熟记“归纳整理的内容”;

2、完成《练习卷》;

3、预习:〔1〕矩形的定义?

〔2〕矩形的性质定理1、2及其推论的内容是什么?

〔3〕怎样证明?

〔4〕例1的解答过程中,运用哪些性质?

思索题

1、平行四边形的性质定理3的逆命题是否是真命题?依据题设和结论写出已知求证;2、如何证明性质定理3的逆命题?3、有几种方法可以证明?4、例2的证明中,运用了哪些性质及判定?是否有其他方法?5、例3的'证明中,运用了哪些性质及判定?是否有其他方法?

跟踪练习

1、在四边形ABCD中,AC交BD于点O,假设AO=1/2AC,BO=1/2BD,那么四边形ABCD是平行四边形。〔〕

2、在四边形ABCD中,AC交BD于点O,假设OC=且,那么四边形ABCD是平行四边形。

3、以下条件中,能够判断一个四边形是平行四边形的是〔〕

〔A〕一组对角相等;〔B〕对角线相等;

〔C〕两条邻边相等;〔D〕对角线相互平分。

创新练习

已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。〔用两种方法〕

达标练习

1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD交于F。求证:四边形AECF是平行四边形。

2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN。

综合应用练习

1、以下条件中,能做出平行四边形的是〔〕

〔A〕两边分别是4和5,一对角线为10;

〔B〕一边为4,两条对角线分别为2和5;

〔C〕一角为600,过此角的对角线为3,一边为4;

〔D〕两条对角线分别为3和5,他们所夹的锐角为450。

推举作业

1、熟记“判定定理3”;

2、完成《练习卷》;

3、预习:

〔1〕“平行四边形的判定定理4”的内容是什么?

〔2〕怎样证明?还有没有其它证明方法?

〔3〕例4、例5还有哪些证明方法?

平行四边形教案篇5

一、教学目标

经受探究平行四边形判别条件的过程,培育同学操作、观测和说理技能;掌控两组对边分别相等的四边形是平行四边形这一判别条件。

二、教材分析

本节课是在同学学习了平行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是平行四边形。

三、教学重难点

重点:

探究并掌控平行四边形的判别条件。

难点:

对平行四边形判别条件的理解及说理的基本方法的掌控。

四、教学预备

两根长40厘米和两根长30厘米的'木条

五、教学设计

首先复习平行四边形的定义,然后通过同学活动发觉平行四边形的另一判定定理,然后借助各种方法加以验证。最末依靠课本所设计的“做一做”,“议一议”以及“随堂练习”加深对平行四边形判定定理的理解。

六、教学过程

1、复习平行四边形的定义。〔旨在为证明一个四边形是平行四边形做铺垫〕

2、小组活动

用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行沟通。〔通过小组活动,同学亲自动手操作,得出结论——当两组对边相等时,四边形是平行四边形;对边不相等时,所围成的四边形不是平行四边形〕。平行四边形的判定定理——两组对边相等的四边形是平行四边形。

3、课本91页的“做一做”〔其目的是巩固和应用“两组对边相等的四边形是平行四边形”的判定定理。〕

4、“议一议”

问题1、一组对边平行,另一组对边相等的四边形肯定是平行四边形吗?说说你的想法。〔先鼓舞同学自主探究,再分组争论,最末全班沟通得出正确结论〕

问题2、要判别一个四边形是平行四边形,你有哪些方法?

5、通过课本的“随堂练习”,使同学对平行四边形的判别条件加以应用和巩固

平行四边形教案篇6

教学目标:

1.使同学在理解的基础上掌控平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观测、比较,进展同学的空间观念,培育同学运用转化的思索方法解决问题的技能和规律思维技能.

3.对同学进行辩诈唯物主义观点的启蒙教育.

教学重点:理解公式并正确计算平行四边形的面积.

教学难点:理解平行四边形面积公式的推导过程.

学具预备:每个同学预备一个平行四边形。

教学过程:

1、什么是面积?

2、请同学翻书到80页,请观测这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

一、导入新课

依据长方形的面积=长×宽〔板书〕,得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

二、讲授新课

〔一〕、数方格法

用展示台出示方格图

1、这是什么图形?〔长方形〕假如每个小方格代表1平方厘米,这个长方形的面积是多少?〔18平方厘米〕

2、这是什么图形?〔平行四边形〕每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学仔细观测一下,平行四边形在方格纸上涌现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

2、请同学看方格图填80页最下方的表,填完后请同学回答发觉了什么?

小结:假如长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。

〔二〕引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

〔三〕割补法

1、这是一个平行四边形,请同学们把自己预备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、老师示范平行四边形转化成长方形的过程。

刚才发觉同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形径直放在剩下的梯形的`右边,拼成长方形。在变换图形的位置时,怎样根据肯定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边渐渐向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边渐渐向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右渐渐移动,直到两个斜边重合。〔老师巡察指导。〕

4、观测〔黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。〕

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有改变?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

老师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导同学总结平行四边形面积计算公式。

这个长方形的面积怎么求?〔指名回答后,在长方形右面板书:长方形的面积=长×宽〕

那么,平行四边形的面积怎么求?〔指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。〕

6、教学用字母表示平行四边形的面积公式。

板书:S=a×h,告知S和h的读音。

说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

〔6〕完成第81页中间的“填空”。

7、验证公式

同学利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

条件强化:求平行四边形的面积需要知道哪两个条件?〔底和高〕

〔四〕应用

1、同学自学例1后,老师依据同学提出的问题讲解。

3、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

4、做书上82页2题。

三、体验

今日,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

四、作业

练习十五第1题。

五、板书设计

平行四边形面积的计算

长方形的面积=长×宽平行四边形的面积=底×高

S=a×hS=ah或S=ah

平行四边形教案篇7

教学目标

1.通过生活情景与实践操作,直观认识平行四边形。

2.在观测与比较中,使同学在头脑里建成长方形与四边形间的区分与联系。

3.体会平行四边形与生活的亲密联系。

教学重难点

通过生活情景与实践操作,直观认识平行四边形。

教学预备

教具:活动长方形框架点子图。

学具:七巧板。课时

安排1

教学过程

一、利用学具逐步探究

1.拉一拉

发给每位同学一个长方形的学具。轻轻地动手拉一拉,看看它发生了什么改变?

生动手操作,沟通自己的发觉。同学会发觉长方形向一边倾斜了,角的大小发生了改变等等。程度较好的同学会说出长方形变成了平行四边形。

老师将拉成的平行四边形贴在黑板上。引出课题并板书:平形四边形

长方形和平行四边形哪些地方相同,哪些地方不同呢?利用你们的学具,在四人小组里争论。

〔1〕小组观测、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论