




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省北师大贵阳附中2024学年数学高三上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.已知复数(1+i)(a+i)为纯虚数(i为虚数单位),则实数a=()A.-1 B.1 C.0 D.23.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为A. B.C. D.4.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.5.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141432341342234142243331112322342241244431233214344142134412由此可以估计,恰好第三次就停止摸球的概率为()A. B. C. D.6.已知函数,,且,则()A.3 B.3或7 C.5 D.5或87.复数的共轭复数为()A. B. C. D.8.在边长为1的等边三角形中,点E是中点,点F是中点,则()A. B. C. D.9.数列{an},满足对任意的n∈N+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列{an}的前100项的和S100=()A.132 B.299 C.68 D.9910.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是()A. B.C. D.11.若,则的值为()A. B. C. D.12.已知集合,,若,则()A.4 B.-4 C.8 D.-8二、填空题:本题共4小题,每小题5分,共20分。13.对于任意的正数,不等式恒成立,则的最大值为_____.14.观察下列式子,,,,……,根据上述规律,第个不等式应该为__________.15.已知数列的各项均为正数,满足,.,若是等比数列,数列的通项公式_______.16.“北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点、远地点离地面的距离大约分别是,,则“北斗三号”卫星运行轨道的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.18.(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.19.(12分)在四边形中,,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.20.(12分)如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.(Ⅰ)求证:;(Ⅱ)求证:四边形是平行四边形;(Ⅲ)若,试判断二面角的大小能否为?说明理由.21.(12分)如图,在三棱柱中,平面ABC.(1)证明:平面平面(2)求二面角的余弦值.22.(10分)“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为“选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【题目详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【题目点拨】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.2、B【解题分析】
化简得到z=a-1+a+1【题目详解】z=1+ia+i=a-1+a+1i为纯虚数,故a-1=0故选:B.【题目点拨】本题考查了根据复数类型求参数,意在考查学生的计算能力.3、B【解题分析】
双曲线的渐近线方程为,由题可知.设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B.4、C【解题分析】
根据程序框图依次计算得到答案.【题目详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:【题目点拨】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.5、A【解题分析】
由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解.【题目详解】由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.则恰好第三次就停止摸球的概率为.故选:A.【题目点拨】本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题.6、B【解题分析】
根据函数的对称轴以及函数值,可得结果.【题目详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【题目点拨】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题7、D【解题分析】
直接相乘,得,由共轭复数的性质即可得结果【题目详解】∵∴其共轭复数为.故选:D【题目点拨】熟悉复数的四则运算以及共轭复数的性质.8、C【解题分析】
根据平面向量基本定理,用来表示,然后利用数量积公式,简单计算,可得结果.【题目详解】由题可知:点E是中点,点F是中点,所以又所以则故选:C【题目点拨】本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.9、B【解题分析】
由为定值,可得,则是以3为周期的数列,求出,即求.【题目详解】对任意的,均有为定值,,故,是以3为周期的数列,故,.故选:.【题目点拨】本题考查周期数列求和,属于中档题.10、C【解题分析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.【题目详解】如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.故选:C【题目点拨】本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.11、C【解题分析】
根据,再根据二项式的通项公式进行求解即可.【题目详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C【题目点拨】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力12、B【解题分析】
根据交集的定义,,可知,代入计算即可求出.【题目详解】由,可知,又因为,所以时,,解得.故选:B.【题目点拨】本题考查交集的概念,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【题目详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:【题目点拨】此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.14、【解题分析】
根据题意,依次分析不等式的变化规律,综合可得答案.【题目详解】解:根据题意,对于第一个不等式,,则有,对于第二个不等式,,则有,对于第三个不等式,,则有,依此类推:第个不等式为:,故答案为.【题目点拨】本题考查归纳推理的应用,分析不等式的变化规律.15、【解题分析】
利用递推关系,等比数列的通项公式即可求得结果.【题目详解】因为,所以,因为是等比数列,所以数列的公比为1.又,所以当时,有.这说明在已知条件下,可以得到唯一的等比数列,所以,故答案为:.【题目点拨】该题考查的是有关数列的问题,涉及到的知识点有根据递推公式求数列的通项公式,属于简单题目.16、【解题分析】
画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【题目详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点、远地点离地面的距离大约分别是,,可得,解得,所以椭圆的离心率为.故答案为:.【题目点拨】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,着重考查了推理与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)面积的最小值为9,.【解题分析】
(Ⅰ)由已知求出抛物线的焦点坐标即得椭圆中的,再由离心率可求得,从而得值,得标准方程;(Ⅱ)设直线方程为,设,把直线方程代入抛物线方程,化为的一元二次方程,由韦达定理得,由弦长公式得,同理求得点的横坐标,于是可得,将面积表示为参数的函数,利用导数可求得最大值.【题目详解】(Ⅰ)∵椭圆:,长轴的右端点与抛物线:的焦点重合,∴,又∵椭圆的离心率是,∴,,∴椭圆的标准方程为.(Ⅱ)过点的直线的方程设为,设,,联立得,∴,,∴.过且与直线垂直的直线设为,联立得,∴,故,∴,面积.令,则,,令,则,即时,面积最小,即当时,面积的最小值为9,此时直线的方程为.【题目点拨】本题考查椭圆方程的求解,抛物线中弦长的求解,涉及三角形面积范围问题,利用导数求函数的最值问题,属综合困难题.18、(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.【解题分析】
(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;(2)先对求导数,根据导数判断和求解即可.(3)把证明转化为证明,然后证明极小值大于极大值即可.【题目详解】解:(1)函数的定义域为由已知得,则,解得.(2)由题意得,则.当时,,所以单调递减,当时,,所以单调递增,所以,单调递减区间为,单调递增区间为,的极小值为,无极大值.(3)要证成立,只需证成立.令,则,当时,单调递增,当时,单调递减,所以的极大值为,即由(2)知,时,,且的最小值点与的最大值点不同,所以,即.所以,.【题目点拨】知识方面,考查建立方程组求未知数,利用导数求函数的单调区间和极值以及不等式的证明;能力方面,考查推理论证能力、分析问题和解决问题的能力以及运算求解能力;试题难度大.19、(1)证明见详解;(2)【解题分析】
(1)由题可知,等腰直角三角形与等边三角形,在其公共边AC上取中点O,连接、,可得,可求出.在中,由勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.(2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出的坐标,进而求出平面的一个法向量.用向量法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出与的夹角,结合图形,写出二面角的大小.【题目详解】证明:(1)在中,为正三角形,且在中,为等腰直角三角形,且取的中点,连接,,,平面平面平面..平面平面(2)以为坐标原点,建立如图所示的空间直角坐标系,则,,,设.则设平面的一个法向量为.则,令,解得与平面所成角的正弦值为,整理得解得或(含去)又为平面的一个法向量,二面角的大小为.【题目点拨】本题考查了线面垂直的判定,面面垂直的判定,向量法解决线面角、二面角的问题,属于中档题.20、(1)证明见解析;(2)证明见解析;(3)不能为.【解题分析】
(1)由平面平面,可得平面,从而证明;(2)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(3)作交于点,延长交于点,连接,根据三垂线定理,确定二面角的平面角,若,,由大角对大边知,两者矛盾,故二面角的大小不能为.【题目详解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没有交点,则与不相交,又与共面,所以,同理可证,所以四边形是平行四边形;(3)不能.如图,作交于点,延长交于点,连接,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高纯银合作协议书
- 2025年核防护材料及装置项目合作计划书
- 2025年船用动力堆及配套产品项目合作计划书
- 2025二手车买卖合同范本购车合同
- 2025电力工程施工内部承包合同 施工合同协议书
- 2025工程项目合作协议合同范本
- 2025年二级稳压装置项目合作计划书
- 2025年车载空气净化器项目建议书
- 2025年镉镍航空蓄电池项目建议书
- 人力资源员工培训沟通技巧
- SL631水利水电工程单元工程施工质量验收标准第2部分:混凝土工程
- GB/T 25413-2010农田地膜残留量限值及测定
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
- 一例巨大儿分娩的个案护理-课件
- 苏教版三年级科学下册单元测试卷及答案(全册)
- 室内质控-检验科课件
- (完整)人力资源六大模块ppt
- 小学四年级下学期英语阅读理解
- 彩色手绘卡通儿科小儿护理高热惊厥健康宣教教案PPT课件讲义
- DB43∕T 498-2009 博落回叶-行业标准
- 心力衰竭病人的护理查房pptppt(ppt)课件
评论
0/150
提交评论