版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学平面向量的基本定理及坐标表示二课件新人教A版必修第一页,共十九页,编辑于2023年,星期六2.3.2平面向量的基本定理及坐标表示第二页,共十九页,编辑于2023年,星期六问题提出1.平面向量的基本定理是什么?
若e1、e2是同一平面内的两个不共线向量,则对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.2.用坐标表示向量的基本原理是什么?设i、j是与x轴、y轴同向的两个单位向量,若a=xi+yj,则a=(x,y).第三页,共十九页,编辑于2023年,星期六3.用坐标表示向量,使得向量具有代数特征,并且可以将向量的几何运算转化为坐标运算,为向量的运算拓展一条新的途径.我们需要研究的问题是,向量的和、差、数乘运算,如何转化为坐标运算,对于共线向量如何通过坐标来反映等.第四页,共十九页,编辑于2023年,星期六探究(一):平面向量的坐标运算
思考1:设i、j是与x轴、y轴同向的两个单位向量,若a=(x1,y1),b=(x2,y2),则a=x1i+y1j,b=x2i+y2j,根据向量的线性运算性质,向量a+b,a-b,λa(λ∈R)如何分别用基底i、j表示?a+b=(x1+x2)i+(y1+y2)j,
a-b=(x1-x2)i+(y1-y2)j,λa=λx1i+λy1j.第五页,共十九页,编辑于2023年,星期六思考2:根据向量的坐标表示,向量a+b,a-b,λa的坐标分别如何?a+b=(x1+x2,y1+y2);a-b=(x1-x2,y1-y2);λa=(λx1,λy1).a+b=(x1+x2)i+(y1+y2)j,
a-b=(x1-x2)i+(y1-y2)j,λa=λx1i+λy1j.第六页,共十九页,编辑于2023年,星期六思考3:如何用数学语言描述上述向量的坐标运算?两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.a+b=(x1+x2,y1+y2);a-b=(x1-x2,y1-y2);λa=(λx1,λy1).第七页,共十九页,编辑于2023年,星期六oxyBA思考4:如图,已知点A(x1,y1),B(x2,y2),那么向量的坐标如何?一般地,一个任意向量的坐标如何计算?
=(x2-x1,y2-y1).任意一个向量的坐标等于表示该向量的有向线段的终点坐标减去始点坐标.第八页,共十九页,编辑于2023年,星期六思考5:在上图中,如何确定坐标为(x2-x1,y2-y1)的点P的位置?oxyBAP(x2-x1,y2-y1)第九页,共十九页,编辑于2023年,星期六思考6:若向量a=(x,y),则|a|如何计算?若点A(x1,y1),B(x2,y2),则如何计算?AaxyO第十页,共十九页,编辑于2023年,星期六探究(二):平面向量共线的坐标表示
思考1:如果向量a,b共线(其中b≠0),那么a,b满足什么关系?思考2:设a=(x1,y1),b=(x2,y2),若向量a,b共线(其中b≠0),则这两个向量的坐标应满足什么关系?反之成立吗?a=λb.向量a,b(b≠0)共线第十一页,共十九页,编辑于2023年,星期六axyObABCD思考3:如何用解析几何观点得出上述结论?向量a,b(b≠0)共线第十二页,共十九页,编辑于2023年,星期六思考4:已知点P1(x1,y1),P2(x2,y2),若点P分别是线段P1P2的中点、三等分点,如何用向量方法求点P的坐标?xyOP2P1PPP第十三页,共十九页,编辑于2023年,星期六思考5:一般地,若点P1(x1,y1),P2(x2,y2),点P是直线P1P2上一点,且,那么点P的坐标有何计算公式?xyOP2P1P第十四页,共十九页,编辑于2023年,星期六理论迁移
例1已知a=(2,1),
b=(-3,4),求a+b,a-b,3a+4b的坐标.
a+b=(-1,5),a-b=(5,-3),3a+4b=(-6,19).第十五页,共十九页,编辑于2023年,星期六
例2如图,已知ABCD的三个顶点的坐标分别是A(-2,1)、B(-1,3)、C(3,4),试求顶点D的坐标.oxyABCDD(2,2)第十六页,共十九页,编辑于2023年,星期六
例3已知向量a=(4,2),b=(6,y),且a∥b,求y的值.y=3
例4已知点A(-1,-1),B(1,3),C(2,5),试判断A、B、C三点是否共线?,A、B、C三点共线.第十七页,共十九页,编辑于2023年,星期六小结作业1.向量的坐标运算是根据向量的坐标表示和向量的线性运算律得出的结论,它符合实数的运算规律,并使得向量的运算完全代数化.
2.对于两个非零向量共线的坐标表示,可借助斜率相等来理解和记忆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《卓越的推销员》课件
- 学习食品安全
- 团队成员发展规划
- 机场内部园林工程协议
- 信托项目招投标改进策略
- 仓库防盗门安装合同
- 商业秘密侵权和解书
- 通信设备招投标及合同执行指南
- 学生户外活动安全协议
- 商业街装修工程合同样本
- 物业经理晋升述职报告
- 重症医学科培训与考核制度
- 大学生职业规划课件
- 银行信贷管理风险控制制度
- 城管执法程序培训课件
- 2024 年广西公需科目一带-路全题库参考答案
- 2024年人教版八年级英语上册期末考试卷(附答案)
- 代理记账业务内部规范(三篇)
- 中层管理干部团队-执行力与领导力提升培训课件
- 1.5万吨每天生活污水处理项目方案设计
- 2024年食品生产企业食品安全管理人员监督抽查考试题库(含答案)
评论
0/150
提交评论