北京大兴区黄村第七中学2021-2022学年高二数学文上学期期末试题含解析_第1页
北京大兴区黄村第七中学2021-2022学年高二数学文上学期期末试题含解析_第2页
北京大兴区黄村第七中学2021-2022学年高二数学文上学期期末试题含解析_第3页
北京大兴区黄村第七中学2021-2022学年高二数学文上学期期末试题含解析_第4页
北京大兴区黄村第七中学2021-2022学年高二数学文上学期期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京大兴区黄村第七中学2021-2022学年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“”是“”的(

)A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要参考答案:B【分析】求出的的范围,根据集合之间的关系选择正确答案.【详解】,因此是的必要不充分条件.故选B.【点睛】本题考查充分必要条件的判断,充分必要条件队用定义判定外还可根据集合之间的包含关系确定.如对应集合是,对应集合是,则是的充分条件是的必要条件.2.给一些书编号,准备用3个字符,其中首字符用,,后两个字符用,,(允许重复),则不同编号的书共有A.8本

B.9本C.12本

D.18本参考答案:D3.执行如图所示的程序框图,输出的结果是(

)A.2 B.4

C.23

D.233参考答案:D4.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.a=0或a=7

B.a<0或a>21 C.0≤a≤21 D.a=0或a=21参考答案:C5.在复平面内,复数对应的点位于(

)(A)第一象限

(B)第二象限

(C)第三象限

(D)第四象限参考答案:A6.下面为一个求20个数的平均数的程序,在横线上应填充的语句为(

)A.i>20

B.i<20

C.i>=20

D.i<=20参考答案:A7.命题“对任意的,”的否定是 ()A.不存在,

B.存在,C.存在,

D.对任意的,参考答案:C略8.设二次函数f(x)=ax2+bx+c的导函数为f′(x),对?x∈R,不等式f(x)≥f′(x)恒成立,则的最大值为()A.+2 B.﹣2 C.2+2 D.2﹣2参考答案:B【考点】7F:基本不等式;63:导数的运算;6B:利用导数研究函数的单调性.【分析】由二次函数f(x)=ax2+bx+c,可得导函数为f′(x)=2ax+b,于是不等式f(x)≥f′(x)化为ax2+(b﹣2a)x+c﹣b≥0.由于对?x∈R,不等式f(x)≥f′(x)恒成立,可得,化为b2≤4ac﹣4a2.可得≤=,令,可得==,再利用基本不等式的性质即可得出.【解答】解:由二次函数f(x)=ax2+bx+c,可得导函数为f′(x)=2ax+b,∴不等式f(x)≥f′(x)化为ax2+(b﹣2a)x+c﹣b≥0.∵对?x∈R,不等式f(x)≥f′(x)恒成立,∴,化为b2≤4ac﹣4a2.∴≤=,令,则=====,当且仅当时取等号.∴的最大值为﹣2.故选:B.【点评】本题考查了导数的运算法则、一元二次不等式的解集与判别式的关系、基本不等式的性质,考查了推理能力与计算能力,属于难题.9.复数等于(

)A.

B.

C.

D.

参考答案:C10.设a,β,γ是三个互不重合的平面,m,n是直线,给出下列命题①若a⊥β,β⊥γ,则a⊥γ;②若a∥β,m?β,m∥a,则m∥β;③若m,n在γ内的射影互相垂直,则m⊥n;④若m∥a,n∥β,a⊥β则m⊥n.其中正确命题的个数为(

)A.0 B.1 C.2 D.3参考答案:B考点:平面的基本性质及推论.专题:证明题.分析:在正方体中举出反例,可以得到命题①和命题③是错误的;根据平面与平面平行和直线与平面平行的定义,得到②是正确的;根据直线与平面平行的判定和空间直线平行的传递性,通过举出反例可得④是错误的.由此可得正确答案.解答:解:对于命题①,若a⊥β,β⊥γ,则a与γ的位置不一定是垂直,也可能是平行,比如:正方体的上、下底面分别是a与γ,右侧面是β则满足a⊥β,β⊥γ,但a∥γ,∴“a⊥γ”不成立,故①不正确;对于命题②,∵a∥β,m?β∴平面a与直线m没有公共点因此有“m∥a”成立,故②正确;对于命题③,可以举出如下反例:在正方体中,设正对我们的面为γ,在左侧面中取一条直线m,上底面中取一条直线n,则m、n都与平面γ斜交时,m、n在γ内的射影必定互相垂直,显然“m⊥n”不一定成立,故③不正确;对于命题④,因为a⊥β,所以它们是相交平面,设a∩β=l当m∥a,n∥β时,可得直线l与m、n都平行,所以m∥n,“m⊥n”不成立,故④不正确.因此正确命题只有1个.故选B点评:本题借助于命题真假的判断为载体,着重考查了平面与平面垂直的定义与性质、直线与平面平行的判定定理和直线在平面中的射影等知识点,属于基础题二、填空题:本大题共7小题,每小题4分,共28分11.若,则目标函数的取值范围是.参考答案:略12.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是

.参考答案:②④【考点】平面与平面之间的位置关系;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【专题】证明题.【分析】用空间中线与线、面与面、线与面的相关定义与定理进行判断,相关定理与定义较多,要根据每一个命题进行合理选择.①用面面平行的判定定理进行验证,②用面面垂直的判定定理进行验证;③用空间两条直线的位置关系验证;④用面面垂直的性质定理验证.【解答】解:当两个平面相交时,一个平面内的两条直线可以平行于另一个平面,故①不对;由平面与平面垂直的判定定理可知②正确;空间中垂直于同一条直线的两条直线可以平行,相交也可以异面,故③不对;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.故应填②④【点评】考查空间中面面的位置关系的判定,属于检查基础知识是否掌握熟练的题型.13.在平面直角坐标系xoy中,若直线(t为参数)过椭圆C:(为参数)的右顶点,则常数a的值为______.参考答案:314.已知函数f(x)=在R上单调递减,且方程|f(x)|=2有两个不相等的实数根,则实数a的取值范围是

.参考答案:[,]【考点】54:根的存在性及根的个数判断.【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(2﹣4a)x+3a在(﹣∞,0)上单调递减,y=loga(x+1)在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤1.∵方程|f(x)|=2有两个不相等的实数根,∴3a≤2,即a≤.综上,≤a≤.故答案为[,].【点评】本题考查了分段函数的单调性,函数零点的个数判断,判断端点值的大小是关键,属于中档题.15.已知函数,则f(4)=

参考答案:216.过点M(1,1)且与曲线y=3x2-4x+2相切的直线方程是______.参考答案:y=2x﹣1

17.已知两直线,,当__________时,有∥。参考答案:1略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC为球O的直径,且SC⊥OA,SC⊥OB,△OAB为等边三角形,三棱锥S﹣ABC的体积为,求球O的表面积.参考答案:【考点】球的体积和表面积.【分析】根据题意作出图形,欲求球的半径r.利用截面的性质即可得到三棱锥S﹣ABC的体积可看成是两个小三棱锥S﹣ABO和C﹣ABO的体积和,即可计算出三棱锥的体积,从而建立关于r的方程,求出r,从而求球O的表面积.【解答】解:根据题意作出图形:设球心为O,球的半径r.∵SC⊥OA,SC⊥OB,∴SC⊥平面AOB,三棱锥S﹣ABC的体积可看成是两个小三棱锥S﹣ABO和C﹣ABO的体积和.∴V三棱锥S﹣ABC=V三棱锥S﹣ABO+V三棱锥C﹣ABO=××r2×r×2=,∴r=2,∴球O的表面积为4π×22=16π.19.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表。甲273830373531乙332938342836(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、方差,并判断选谁参加比赛更合适。参考答案:解析:(1)画茎叶图,中间数为数据的十位数(3分)从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此乙发挥比较稳定,总体得分情况比甲好。……(6分)

(2)=33,=33;≈15.67,≈12.67;甲的中位数是33,乙的中位数是33.5。综合比较选乙参加比赛较为合适。

……………

(13分)20.如图1,等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.将△ABE沿AE折起后如图2,使二面角B﹣AE﹣C成直二面角,设F是CD的中点,P是棱BC的中点.(1)求证:AE⊥BD;(2)求证:平面PEF⊥平面AECD;(3)判断DE能否垂直于平面ABC,并说明理由.参考答案:【考点】平面与平面垂直的判定;空间中直线与直线之间的位置关系;直线与平面垂直的判定.【分析】(1)证明AE⊥BD,只需证明AE⊥平面BDM,利用△ABE与△ADE是等边三角形,即可证明;(2)证明平面PEF⊥平面AECD,只需证明PN⊥平面AECD,只需证明BM⊥平面AECD即可;(3)DE与平面ABC不垂直.假设DE⊥平面ABC,则DE⊥AB,从而可证明DE⊥平面ABE,可得DE⊥AE,这与∠AED=60°矛盾.【解答】(1)证明:设AE中点为M,连接BM,∵在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点,∴△ABE与△ADE都是等边三角形.∴BM⊥AE,DM⊥AE.∵BM∩DM=M,BM、DM?平面BDM,∴AE⊥平面BDM.∵BD?平面BDM,∴AE⊥BD.(2)证明:连接CM交EF于点N,∵ME∥FC,ME=FC,∴四边形MECF是平行四边形,∴N是线段CM的中点.∵P是BC的中点,∴PN∥BM.∵BM⊥平面AECD,∴PN⊥平面AECD.又∵PN?平面PEF,∴平面PEF⊥平面AECD.(3)解:DE与平面ABC不垂直.证明:假设DE⊥平面ABC,则DE⊥AB,∵BM⊥平面AECD,∴BM⊥DE.∵AB∩BM=B,AB、BM?平面ABE,∴DE⊥平面ABE.∵AE?平面ABE,∴DE⊥AE,这与∠AED=60°矛盾.∴DE与平面ABC不垂直.21.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.参考答案:【考点】HQ:正弦定理的应用;HS:余弦定理的应用.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论