山东省滨州市刘庙回民中学高一数学文联考试卷含解析_第1页
山东省滨州市刘庙回民中学高一数学文联考试卷含解析_第2页
山东省滨州市刘庙回民中学高一数学文联考试卷含解析_第3页
山东省滨州市刘庙回民中学高一数学文联考试卷含解析_第4页
山东省滨州市刘庙回民中学高一数学文联考试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省滨州市刘庙回民中学高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()A.f(x)为奇函数 B.f(x)为偶函数 C.f(x)+1为奇函数 D.f(x)+1为偶函数参考答案:C【考点】函数奇偶性的判断.【分析】对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,考察四个选项,本题要研究函数的奇偶性,故对所给的x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1进行赋值研究即可【解答】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C2.已知变量满足则的最小值是A.6

B.5

C.3

D.2参考答案:C3.若平面向量与的夹角为120°,=(,﹣),||=2,则|2﹣|等于()A. B.2 C.4 D.12参考答案:B【考点】平面向量数量积的运算.【分析】根据向量的模,以及向量的数量积公式计算即可.【解答】解:∵平面向量与的夹角为120°,=(,﹣),||=2,∴||=1,∴=||?||?cos120°=1×2×=﹣1,∴|2﹣|2=4||2+||2﹣4=4+4﹣4×(﹣1)=12,∴|2﹣|=2故选:B4.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是()A.1 B.2 C.3 D.4参考答案:A【考点】3K:函数奇偶性的判断.【分析】若函数y=f(x)是偶函数,则其定义域关于原点对称,解析式有f(﹣x)=f(x),图象关于y轴对称;若函数y=f(x)是奇函数,则其定义域关于原点对称,解析式有f(﹣x)=﹣f(x),图象关于原点对称.根据以上知识依次分析题目中的四个命题作出判断.【解答】解:偶函数的图象关于y轴对称,但不一定与y轴相交,因此①错误,③正确;奇函数的图象关于原点对称,但不一定经过原点,只有在原点处有定义才通过原点,因此②错误;若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,只要定义域关于原点对称即可,因此④错误.故选A.【点评】本题考查函数奇偶性的定义域、解析式及图象三种特征.5.首项为b,公比为a的等比数列{an}的前n项和为Sn,对任意的n∈N*,点(Sn,Sn+1)在()A.直线y=ax+b上

B.直线y=bx+a上C.直线y=bx-a上

D.直线y=ax-b上

参考答案:A当a≠1时,Sn=,Sn+1=,∴点(Sn,Sn+1)为:(,),显然此点在直线y=ax+b上.当a=1时,显然也成立.6.下列各角中与330°角的终边相同的是(

)A.510°B.150°

C.-150°

D.-390°参考答案:D7.在锐角中,有

)A.且

B.且

C.且

D.且参考答案:B8.“x<﹣1”是“ln(x+2)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】由ln(x+2)<0,可得0<x+2<1,解出即可判断出结论.【解答】解:由ln(x+2)<0,可得0<x+2<1,解得﹣2<x<﹣1,∴“x<﹣1”是“ln(x+2)<0”的必要不充分条件.故选:B.9.(5分)在正方体ABCD﹣A1B1C1D1中,M是棱DD1的中点,点O为底面ABCD的中心,P为棱A1B1上任一点,则异面直线OP与AM所成的角的大小为() A. 30° B. 60° C. 90° D. 120°参考答案:C考点: 异面直线及其所成的角.专题: 空间角.分析: 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线OP与AM所成的角的大小.解答: 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,A1P=t(0≤t≤1),A(2,0,0),M(0,0,1)O(1,1,0),P(2,t,2),=(﹣2,0,1),=(1,t﹣1,2),∴=﹣2+0+2=0,∴异面直线OP与AM所成的角的大小为90°.故选:C.点评: 本题考查异面直线OP与AM所成的角的大小的求法,是基础题,解题时要认真审题,注意向量法合理运用.10.三个数,,的大小关系为(

).A. B.C. D.参考答案:A∵,,,又,.∴.二、填空题:本大题共7小题,每小题4分,共28分11.如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是

.参考答案:12.已知向量,,则=。参考答案:13.已知函数在区间上是增函数,则实数的取值范围为

.参考答案:

14.计算:=______.参考答案:115.(5分)已知函数f(x)是定义为在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,都有f(x﹣1)≤f(x+1)成立,则实数a的取值范围是

.参考答案:[﹣,]考点:函数恒成立问题.专题:计算题;数形结合;分类讨论;函数的性质及应用.分析:由于当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2).可得当0≤x≤a2时,f(x)=﹣x;当a2<x≤2a2时,f(x)=﹣a2;当x>3a2时,f(x)=x﹣3a2.画出其图象.由于函数f(x)是定义在R上的奇函数,即可画出x<0时的图象.由于x∈R,f(x﹣1)≤f(x+1),即有?x∈R,f(x﹣2)≤f(x),可得6a2≤2,解出即可.解答:∵当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2).∴当0≤x≤a2时,f(x)=(a2﹣x+2a2﹣x﹣3a2)=﹣x;当a2<x≤2a2时,f(x)=﹣a2;当x>3a2时,f(x)=x﹣3a2.画出其图象.由于函数f(x)是定义在R上的奇函数,即可画出x<0时的图象,与x>0时的图象关于原点对称.∵?x∈R,f(x﹣1)≤f(x+1),即有?x∈R,f(x﹣2)≤f(x),∴6a2≤2,解得﹣≤a.∴实数a的取值范围为[﹣,].故答案为:[﹣,].点评:本题考查了函数奇偶性、周期性,考查了分类讨论的思想方法,考查了数形结合的思想方法,考查了推理能力与计算能力,属于中档题.16.(3分)函数y=sin(ωx﹣)(ω>0)的最小正周期为π,则ω的值为

.参考答案:2考点: 正弦函数的图象.专题: 三角函数的图像与性质.分析: 根据三角函数的周期公式求出ω即可.解答: ∵函数y=sin(ωx﹣)(ω>0)的最小正周期为π,∴周期T==π,解得ω=2,故答案为:2.点评: 本题主要考查三角函数周期的应用,要求熟练掌握三角函数的周期公式.17.设数列则是这个数列的第

项。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=,(1)画出函数f(x)的图象;(2)求f(f(3))的值;(3)求f(a2+1)(a∈R)的最小值.参考答案:【考点】函数的图象;函数的最值及其几何意义.【分析】(1)分段作图;(2)求出f(3)的值,判断范围,进行二次迭代;(3)求出a2+1的范围,根据图象得出结论.【解答】解:(1)作出函数图象如右图所示,(2)∵f(3)=log23,∴0<f(3)<2,∴f(f(3))=f(log23)=2==.(3)由函数图象可知f(x)在[1,2]上是减函数,在(2,+∞)上是增函数,∵a2+1≥1,∴当a2+1=2时,f(a2+1)取得最小值f(2)=1.【点评】本题考查了分段函数作图,函数求值及单调性,结合函数图象可快速得出结论.19.(12分)已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,(1)求证:直线l恒过定点;(2)判断直线l被圆C截得的弦长何时最长,何时最短?并求截得的弦长最短时,求m的值以及最短长度.参考答案:考点: 直线和圆的方程的应用;恒过定点的直线.专题: 计算题;证明题.分析: (1)直线l的方程可化为(2x+y﹣7)m+(x+y﹣4)=0,要使直线l恒过定点,则与参数的变化无关,从而可得,易得定点;(2)当直线l过圆心C时,直线被圆截得的弦长最长;当直线l⊥CP时,直线被圆截得的弦长最短解答: (1)证明:直线l的方程可化为(2x+y﹣7)m+(x+y﹣4)=0(3分)(5分)所以直线恒过定点(3,1)(6分)(2)当直线l过圆心C时,直线被圆截得的弦长最长.(8分)当直线l⊥CP时,直线被圆截得的弦长最短直线l的斜率为由解得此时直线l的方程是2x﹣y﹣5=0圆心C(1,2)到直线2x﹣y﹣5=0的距离为)所以最短弦长是(12分)点评: 本题考查直线恒过定点问题,采用分离参数法,借助于解方程组求解;圆中的弦长,应充分利用其图象的特殊性,属于基础题20.已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.参考答案:【考点】二面角的平面角及求法;直线与平面平行的判定;平面与平面垂直的判定.【分析】(1)取A1D中点G,并连接FG,EG,能够说明四边形BFGE为平行四边形,从而根据线面平行的判定定理即可得出BF∥面A1DE;(2)先根据已知的边、角值说明△A1DE为等边三角形,然后取DE中点H,连接CH,从而得到A1H⊥DE,根据已知的边角值求出A1H,CH,得出,从而得到A1H⊥CH,从而根据线面垂直及面面垂直的判定定理即可证出面A1DE⊥面DEBC;(3)过H作HO⊥DC,垂足为O,并连接A1O,容易说明DC⊥面A1HO,从而得出∠A1OH为二面角A1﹣DC﹣E的平面角,能够求出HO,从而求出tan∠A1OH,即求出了二面角A1﹣DC﹣E的正切值.【解答】解:(1)证明:如图,取DA1的中点G,连FG,GE;F为A1C中点;∴GF∥DC,且;∴四边形BFGE是平行四边形;∴BF∥EG,EG?平面A1DE,BF?平面A1DE;∴BF∥平面A1DE;(2)证明:如图,取DE的中点H,连接A1H,CH;AB=4,AD=2,∠DAB=60°,E为AB的中点;∴△DAE为等边三角形,即折叠后△DA1E也为等边三角形;∴A1H⊥DE,且;在△DHC中,DH=1,DC=4,∠HDC=60°;根据余弦定理,可得:HC2=1+16﹣4=13,在△A1HC中,,,A1C=4;∴,即A1H⊥HC,DE∩HC=H;∴A1H⊥面DEBC;又A1H?面A1DE;∴面A1DE⊥面DEBC;(3)如上图,过H作HO⊥DC于O,连接A1O;A1H⊥面DEBC;∴A1H⊥DC,A1H∩HO=H;∴DC⊥面A1HO;∴DC⊥A1O,DC⊥HO;∴∠A1OH是二面角A1﹣DC﹣E的平面角;在Rt△A1HO中,,;故tan;所以二面角A1﹣DC﹣E的正切值为2.21.已知向量,.(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率;(2)若x,y在连续区间[1,6]上取值,求满足概率.参考答案:(1);(2).【分析】(1)设事件,利用古典概型概率公式求满足的概率;(2)利用几何概型的概率公式求满足的概率.【详解】(1)基本事件如下:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,共36个.设事件,则事件包含2个基本事件(1,3),(2,5),所以,即满足的概率是.(2)总的基本事件空间,是一个面积为25的正方形,事件,则事件所包含的基本事件空间是,是一个面积为的多边形,所以,即满足的概率是.【点睛】本题主要考查古典概型和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论