版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山东省济南市濟南曆城第二中学高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在数列{an}中,,,则的值为(▲
)A.
B.
C.5
D.以上都不对参考答案:C2.设,用二分法求方程内近似解的过程
中取区间中点,那么下一个有根区间为
(
)A.(1,2)
B.(2,3)
C.(1,2)或(2,3)
D.不能确定参考答案:A略3.已知a=log32,b=(log32)2,c=log4,则()A.a<c<b B.c<b<a C.a<b<c D.b<a<c参考答案:B【考点】对数值大小的比较.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用对数函数的性质求解.【解答】解:∵0=log31<a=log32<log33=1,∴0<b=(log32)2<a=log32,∵c=log4<log41=0,∴c<b<a.故选:B.【点评】本题考查三个数的大小的比较,是中档题,解题时要认真审题,注意对数函数性质的合理运用.4.与y=|x|为同一函数的是(
)A. B.C. D.参考答案:D【考点】判断两个函数是否为同一函数.【专题】阅读型.【分析】题目给出了一个分段函数,把该函数分段写出后对四个选项逐一核对判断.【解答】解:函数y=|x|=,而函数的定义域为[0,+∞),与已知函数定义域不同;的定义域是{x|x>0,且x≠1},与已知函数定义域不同;的定义域为{x|x≠0},与已知函数定义域不同;,所以该函数与已知函数为同一函数.故选D.【点评】题目考察了判断函数是否为同一函数的方法,判断两个函数是否为同一函数,就看它们的定义域是否相同,对应关系是否一致,属基础题.5.函数y=3sin(2x+)的图象,可由y=sinx的图象经过下述哪种变换而得到:(
)A.向右平移个单位,横坐标缩小到原来的倍,纵坐标扩大到原来的3倍B.向左平移个单位,横坐标缩小到原来的倍,纵坐标扩大到原来的3倍C.向右平移个单位,横坐标扩大到原来的2倍,纵坐标缩小到原来的倍D.向左平移个单位,横坐标缩小到原来的倍,纵坐标缩小到原来的倍参考答案:B略6.在△ABC中,,b=2,其面积为,则等于(
)A. B. C. D.参考答案:B【分析】先由面积公式得到c=4,再由余弦定理得到a边长度,最终由正弦定理得到结果.【详解】△ABC中,,b=2,其面积为由余弦定理得到,代入数据得到故答案为:B.【点睛】这个题目考查了正余弦定理解三角形的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.7.数列{an}前项和为,,,,若,则(
)A.1344 B.1345 C.1346 D.1347参考答案:C【分析】首先由递推关系确定数列的特征,然后结合数列的通项公式求解实数k的值即可.【详解】由题意有:当时,,两式作差可得:,由于,故,即数列的奇数项、偶数项分别构成一个公差为3的等差数列,,据此可得,则数列的通项公式为:,,,加2后能被3整除,则.本题选择C选项.【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.8.设定义在R上的函数,,且对任意,满足,,则(
)A. B. C. D.参考答案:D【分析】先把转化成,与进行加法运算,依次推倒,得到,再根据条件,得到,然后根据等式关系,用累加法计算得到结果.【详解】∵,∴(1)∵(2)∴(1)+(2)得=,即(3)∴(1)+(3)得=,即,∵,∴∴===+++++3?22+3?20=2008+++++3?22+3?20==.考点:不等式性质;叠加法;等比数列前n项和公式;函数的求值【点睛】本题考查不等式同向相加的性质,考查累加法和等比数列前n项和公式,难度比较大,属于难题.9.函数y=sin(2x+)图象的一条对称轴方程是:
A.
B.
C.
D.参考答案:A10.已知,那么角是(
)A.第一或第二象限角
B.第二或第三象限角C.第三或第四象限角
D.第一或第四象限角参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.直线y=kx+3与圆(x一3)2+(y一2)2=4相交于A,B两点,若|AB|=2,则实数k的值是____.参考答案:或012.在中,已知,b,c是角A、B、C的对应边,则①若,则在R上是增函数;②若,则ABC是;③的最小值为;④若,则A=B;⑤若,则,其中错误命题的序号是_____。参考答案:解析:错误命题③⑤。①②。③显然。④
(舍)
,。⑤错误命题是③⑤。13.已知角终边在直线上,始边与非负半轴重合,若,
则实数的值是
.参考答案:14.设数列的前项和为,若,则通项
.参考答案:略15.已知数列的通项公式是(),数列的前项的和记为,则
。参考答案:16.已知函数f(x)=log2(x+2),则f(x)>2时x的取值范围为.参考答案:{x|x>2}【考点】指、对数不等式的解法;对数函数的图象与性质.【专题】计算题;函数思想;转化思想;函数的性质及应用;不等式的解法及应用.【分析】利用对数函数的单调性,转化不等式为代数不等式求解即可.【解答】解:函数f(x)=log2(x+2),则f(x)>2,可得log2(x+2)>2,即x+2>4,解得x>2.x的取值范围为{x|x>2}.故答案为:{x|x>2}.【点评】本题考查对数不等式的解法,对数函数的单调性的应用,考查计算能力.17.过点(1,2)总可以向圆x2+y2+2kx+2y+k2-15=0作两条切线,则k的取值范围是____参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,内角A、B、C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若a,c是方程的两根,求b的值.参考答案:(1);(2)【分析】(1)由,可得:,再用正弦定理可得:,从而求得的值;(2)根据题意由韦达定理和余弦定理列出关于的方程求解即可.【详解】(1)由,得:,可得:,得.由正弦定理有:,由,有,故,可得,由,有.(2)由,是方程的两根,得,利用余弦定理得而,可得.19.设集合,.若,求实数的值;若,求实数的取值范围.参考答案:
(1)
5
(2)
m<-2或m>7略20.在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a﹣c)cosB.(1)求cosB;(2)若?=4,b=4,求边a,c的值.参考答案:【考点】正弦定理;平面向量数量积的运算;余弦定理.【分析】(1)利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理求得cosB的值.(2)由?=4可得ac=12,再由余弦定理可得a2+c2=40,由此求得边a,c的值.【解答】解:(1)在△ABC中,∵bcosC=(3a﹣c)cosB,由正弦定理可得sinBcosC=(3sinA﹣sinC)cosB,∴3sinA?cosB﹣sinC?cosB=sinBcosC,化为:3sinA?cosB=sinC?cosB+sinBcosC=sin(B+C)=sinA.∵在△ABC中,sinA≠0,故cosB=.(2)由?=4,b=4,可得,a?c?cosB=4,即ac=12.…①.再由余弦定理可得b2=32=a2+c2﹣2ac?cosB=a2+c2﹣,即a2+c2=40,…②.由①②求得a=2,c=6;或者a=6,c=2.综上可得,,或.21.(本题满分12分)我国加入WTO时,根据达成的协议,若干年内某产品关税与市场供应量P的关系允许近似满足(其中为关税的税率,且,为市场价格,为正常数),当时的市场供应量曲线如图所示(1)根据图象求的值;(2)设市场需求量为Q,它近似满足,当P=Q时的市场价格称为市场平衡价格,为使市场平衡价格不低于9元,求税率的最小值.参考答案:解:(1)由图象知即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 春 朱自清教育课件
- 辽宁省辽阳市第一中学2024-2025学年七年级上学期第二次学科素养能力训练(期中)地理试卷(含答案)
- 河南省许昌市长葛市2024-2025学年九年级上学期期中质量监测物理试题(含答案)
- 11 A受迫振动 共振 基础版2025新课改-高中物理-选修第1册(21讲)
- 电商代运营相关行业投资方案范本
- 高效能复合外墙外保温材料相关行业投资规划报告
- 腹部的断面解剖学课件
- 现代生产运营管理
- 儿童保健和疾病防治原则课件
- 【初中地理】海陆变迁教学课件-2024-2025学年七年级地理上学期(湘教版2024)
- 中药项目投资合同范例
- 2024年秋新人教版7年级上册语文教学课件 第5单元19《大雁归来》
- 2024-2025学年上海市普陀区八年级(上)期中数学试卷
- 假期补课协议书
- 电子商务支付结算系统开发合同
- 服务质量、保证措施
- 2024年部编版九年级语文上册电子课本(高清版)
- (必练)广东省军队文职(经济学)近年考试真题试题库(含答案)
- 含羞草天气课件
- 2024年安全生产知识竞赛考试题库及答案(共五套)
- 22《鸟的天堂》课件
评论
0/150
提交评论