数学教学设计(汇编15篇)_第1页
数学教学设计(汇编15篇)_第2页
数学教学设计(汇编15篇)_第3页
数学教学设计(汇编15篇)_第4页
数学教学设计(汇编15篇)_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第数学教学设计(汇编15篇)数学教学设计1

“用数学”是以新的教学理念为指导,注意结合计算的教学,安排应用数学解决的内容,激发学生主动参与、发现,培养学生“用数学”的意识,通过数学活动,采用动手操作、自主探索、合作交流等活动方式,让学生了解数学与现实生活的广泛联系,会灵活运用不同的方法解决生活中的简单问题,感受数学在日常生活中的作用,体会学习数学的重要性,逐步获得数学的思想方法,并促使应用意识的形成。

这节课是巩固第47页、58页的教学内容,整合第107页的内容。重在引导学生用数学解决问题,通过观察,在情境图中会找有用的信息,并会选择相应的数学信息,提出问题,解决问题。同时巩固和熟练10以内的加减法。

第一个环节是巩固第47页、58页的教学内容,出示带大括号和问号的情境图,引导学生完整的叙述图意。在大括号和问号这些符号的引导下,完整地认识了一个用数学的整体形式。在此基础上,通过改变问号的位置,重点引导:问号在哪?问题是什么呢?加强对“问题”的感知和理解。

第二环节是在没有了符号(?)的开放情境中。首先引导学生有条理的观察,交流看到的数学信息,然后引导学生初步体会根据合适的信息,可以提出相应的数学问题。如根据你看到的左边有2个黄蘑菇,右边有1个黄蘑菇,可以提出什么数学问题?

第三个环节是在此情境下,自己选择信息,提出相应的'数学问题。如同学们根据左边有2个黄蘑菇,右边有1个黄蘑菇,提出了一共有多少个黄蘑菇?真棒,再看图,根据其他信息还能提出什么数学问题呢?小组里先说说。然后汇报根据什么信息提出了什么问题?怎么解决?重点解决“一共有几个蘑菇”的问题。特别注意引导学生从多角度分析问题,寻找不同的解决策略。比如引导学生思考除了按左右来分,5+4或4+5。还可以怎么样计算?还可以按颜色分,3+6或6+3。让学生在用不同方法解决问题的活动中,产生乐趣,锻炼能力。

第四个环节出示109页游泳图,要求先仔细观察找出数学信息,根据信息提出相应的一个数学问题来解决。你想解决什么问题就解决什么问题。解决问题是学习的目标。教师要求每个学生根据信息,用自己的思维方式自由地、开放地去感悟数学知识,主动获取知识。体现了用不同信息,提出不同问题的用数学的思想。通过汇报,引导学生体会同样是解决“一共有多少人”的问题,却列出了不同的算式。这是一个开放性提问,小组进行协作学习,在自主探究的基础上让学生在小组内充分展示自己的见解,在小组合作交流中学会互补学习,提高交往能力,并获得积极的数学情感。数学教学设计2

教学目标:

1、使学生通过观察、实验、猜测、推理等活动发现事物中简单的排列规律。

2、培养学生初步的观察能力、分析能力和推理能力。

3、培养学生探索数学问题的兴趣,以及发现和欣赏数学规律美的意识。

教学重点:

理解规律的含义,掌握找规律的`方法。

教学难点:

能够表达发现的规律,并会运用规律解决一些简单的问题。

教学过程:

一、情景导入,初步感知规律

师:孩子们,今天几只可爱的小动物也来到了我们的课堂中,你们能够猜出它们是谁吗?

孩子们自由猜(小猫、小狗、小猪……)

师评:有可能也有可能说不定吆你可真敢想希望如你所愿一切皆有可能师:它们到底是谁呢?瞧,它们来了!让我们大声喊出它们的名字吧!

生:小狗小猫小狗小猫……

师:猜猜看,接下来会是谁呢?

生:小狗小猫

师:孩子,能说说你的想法吗?

生:有规律

出示:规律

师评:你们都有一双善于观察的眼睛,你们真棒!今天就让我们带着这双会发现的眼睛去“找”规律。孩子们,让我们用心地读一下课题,好吗?——找规律

二、自主探究,认识规律

课件出示主题图

师:看,同学位正在举行联欢会呢,他们的教室多漂亮呀!仔细观察,从图中你都看到了什么?谁来说说看?数学教学设计3

教学内容:

神奇的扑克

教学内容:

在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。

教学目标:

1、通过对

2、调动学生丰富的联想,养成一种思考的习惯。

教学重难点:

教学过程:

一、谈话引入

师:同学们,这个你们一定见过吧!这是我们生活中比较常见的

生:......

(教师补充,引发学生的好奇心。)

师:

生:......

二、新课

1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬

2、大王=太阳小王=月亮红=白天黑=夜晚

3、A=12=23=34=45=56=67=78=89=910=10J=11Q=12K=13大王=1小王=1

4、所有牌的和+小王=平年的天数

所有牌的和+小王+大王=闰年的天数

5、扑克中的K、Q、J共有12张,3_4=12,表示一年有12个月。

6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。

7、一种花色的'和=一个季度的天数。一种花色有13张牌=一个季度有13个星期

三、小结

生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。数学教学设计4

(一)创设情境导入新课

不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流探究新知

(活动一)探究角平分仪的原理。具体过程如下:

播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的.开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

已知:∠AOB.

求作:∠AOB的平分线.

作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

(3)作射线OC,射线OC即为所求.

设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:

1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:

1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

(活动三)探究角平分线的性质

思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

这样设计的目的是加深对全等的认识。数学教学设计5

一、教学目标

1.知识与技能目标:借助已有的生活经验,学生自主认识新的时间单位“秒”,知道“1分=60秒”。

2.过程与方法目标:通过动手操作等丰富的学习活动,学生体验一段时间,建立1秒及1分(60秒)的时间观念。

3.情感态度价值观目标:体验数学与生活的联系,渗透爱惜时间的教育,教育学生要珍惜分分秒秒。

二、教学重难点

借助丰富的活动,学生体验一段时间,建立正确的时间观念。体验数学与生活的联系。

三、教学准备

(教师)多媒体课件;(学生)口算卡片,每人准备一个时钟。

四、教学步骤

(一)情境导入

(播放新年联欢晚会的片段)

谈话:新年的钟声将敲响,让我们一起来倒计时。(课件出示钟面,伴随着“滴答”声,让学生共同进行倒计时)

谈话:刚才,我们进行倒计时,像这样计量很短的时间,我们常用比分更小的单位--秒。今天,我们就共同来认识这个新朋友。(板书课题)

(二)探究新知

1.认识时间单位“秒”

(1)师:你知道怎样计量用“秒”做单位的时间吗?请仔细观察你们所带的钟表,看看有什么发现。

(2)学生自主探索,共同探究。

(3)学生反馈:

①时钟有3根针,走得最快的那根是秒针。

②秒针走1小格是1秒。走1大格就是5秒。

③如果是读取电子表上的时间时,让学生可以利用以前学过的电子表的读法进一步类推。

(4)体验1秒钟

①师:1秒到底有多长呢?让我们闭上眼睛,仔细听一听。(利用时钟的`“滴答声”让学生感受。)钟表发出“滴答”一声所经过的时间就是1秒。

②学生跟着时钟的“滴答声”,做拍手练习,每一秒拍一下手,看看谁拍得最准。

③比一比,哪位学生不看时钟,每秒数一个数,看谁数得最准确。

④小结:刚才,我们听到钟声“滴答”一声就是一秒,我们拍一下手用1秒,数一个数也是用1秒。1秒的时间确实很短,但是有些现代化的工具在这短短的1秒钟里却可以做很多事情呢。(举几个具有说服力的数据说明1秒钟的价值)所以,我们可别小看了这短短的1秒钟,它的作用可大了。我们要珍惜时间,不浪费每1分、每1秒。

(5)师:(边拨秒针)秒针从数字12走到数字6,这表示经过几秒?从数字6走到8,表示经过几秒?请你轻轻告诉同桌的小朋友你是怎么知道的。

(6)你还知道秒针从哪儿走到哪儿也是10秒?

2.探索分与秒之间的关系

(1)师:如果秒针从数字12起,走一圈,又回到数字12,这时经过多长时间,分针有没有什么变化。

(2)让学生小组合作,仔细观察钟面,自主探索。

(3)学生反馈。

(4)小结:秒针走1圈,就是60秒,这时分针走1小格,也就是1分钟,所以1分=60秒。

3.练习:体验1分钟

(1)让学生看钟表,通过读秒来体验1分钟的长短。

(2)师:1分钟能做什么呢?

让学生分组画画、写字、做口算、摸脉搏体验1分钟实际的长短。

(3)让学生举例,说说1分钟可以做什么事。

(三)小结

师:通过今天的学习,你有什么收获?(认识时间单位--秒)有了秒针,计时就更准确了,时针、分针、秒针在时间王国里分工合作,准确地为人们报时。

(四)巩固练习

(1)完成“练习一”第2题。

填上合适的时间单位。

补充:

①们上一节课的时间是40。

②小明跑100米要用19。

(2)跑步比赛

师:让我们一起到紧张激烈的运动场上去看看。50米决赛刚结束,你能通过钟表的显示,说出运动员的成绩吗?从这张成绩表中,你能看出什么?

(3)活动:

师:下课铃声响了,请大家安静,迅速地将课桌上的学习用品整理到书包里,看看需要多少时间。看谁整理得又快又好。(学生整理,教师报时)

师:相信大家今后每时每刻都能这样珍惜分分秒秒,做时间的主人。

(五)作业收集有关时间的信息。数学教学设计6

教学内容:

《义务教育课程标准实验教科书数学五年级下册》第134~135页。

教学目标:

1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。

2.以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

教学重点:

经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。

教学难点:

脱离实物,借助纸笔帮助分析“找次品”的问题。

教、学具准备:

教师用具:卡片、5个药瓶

学生用具:卡片

教学过程:

一、初步认识“找次品”的基本原理

1.创设情景,自主探索。

(1)出示钙片,提出问题:这里有3瓶钙片,其中有一瓶少了3片,你能用什么办法把它找出来吗?

(2)独立思考。教师鼓励大胆设想,积极发言。

(3)全班汇报。教师指导学生认真倾听并且积极评价各种方案:打开瓶子数一数、用手掂掂、用秤称(你选择用什么称来称)、用天平称(教师不急于让学生说出最佳方案,给全班学生留出思考空间,但是可帮助发言学生阐述天平的工作原理和特点:天平大家都见过吗?有两个托盘,如果两个托盘里的物品重量相等,天平就保持平衡,如果不相等,重的一端就会……轻的一端就会……)。

2.自主探索用天平找次品的基本方法。

(1)引导学生探索利用天平找次品的方法:大家猜猜,怎么样利用天平找出这瓶少了的钙片。我们可以拿出3个学具代替钙片,想象一下,怎样找出少了的这瓶?

(2)独立思考,有一定思维结果的时候组织小组交流。教师指导交流方法:一个一个地讲,声音不要太大,能让对方听到就可以了,也可以边讲边演示,让对方可以更清楚……

(3)全班汇报。一个一个地称出重量(利用砝码);利用推理(教师手托实物模拟天平帮助演示,强调全面考虑可能出现的结果:你说的是“如果”,那还可能出现什么情况?说明什么?)……

教师小结:利用天平找到这瓶钙片有多种方法,可以在天平上用砝码称出每瓶的重量再进行比较;还可以在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的:如果天平平衡,说明剩下的一瓶似的少的;如果天平不平衡,说明上扬的一端的是少的。

3.揭示课题。

综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称……),哪一种更加快速、准确?(天平)

在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们再请天平来帮帮忙。

二、初步认识“找次品”的基本解决手段和方法

1.创设情景,自主探索。

(1)出示问题,引导学生利用学具自主探索:现在有5瓶钙片,其中有一瓶比较少,怎样利用天平把这瓶钙片找出来呢?我们可以拿出5个学具代替钙片,想象一下,怎样找出少了的这瓶?

(2)独立思考,有一定思维结果的时候组织小组交流。指导学生在交流中比较方法。

(3)全班汇报。较复杂的方法教师帮助板书示意图。教师在引导语中强调全面考虑可能出现的结果:怎么找?可能出现什么情况?说明什么?

(4)对几种方法的梳理、比较:“分成几份?每份数量是多少?至少需要称几次就一定能找出来?

(5)教师小结:在天平的帮助下找到这瓶钙片有多种方法,可以……还可以……。除了利用学具,还可以画出这样的示意图来帮助我们思考。

三、解决9个零件问题,归纳出找次品的最优方法

1.出示问题:有9个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?

教师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品。

2.自主探索。在有一定结果以后请一个学生上台展示方法,教师帮助梳理分法:分成几份?每份各是多少?至少需要几次就一定能找出次品?

3.反思自己的分法并在小组内交流。教师指导交流重点:看看我们的`分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证找出次品?提示学生把可能出现的结果考虑全面。

4.全班汇报。教师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。

5.教师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?

小结:把9个零件分成3部分,并且平均分,能够保证找出次品而且称的次数最少。

四、推测多个零件找次品的解决办法

提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法能保证找出次品而且所需次数一定最少呢?我们来猜一猜。

学生猜测。

要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?

学生汇报:3次。

我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(228)(336)(552)(66)……

学生选择一种分法在纸上进行分析。

全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?

小结:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。

五、巩固练习

完成P136练习二十六的第二题:

有15盒饼干,其中的14盒质量相同,另有一盒少了几块,如果能用天平称,至少几次可以找出这盒饼干?

独立思考,在纸上进行分析。

全班汇报。教师指导学生在汇报时重点阐述:分成几份?每份是多少?至少需要几次就可以找出这盒饼干?

小结:在解决找次品问题的时候,我们把待测物品分成3份,并且平均分的方法能够准确快捷地找出次品。

六、拓展训练

刚才我们我们分析的9、12和15都是刚好可以平均分成3份的数,假如遇到不能平均分成3份的数,例如10个、11个……又该怎么分呢?大家猜猜,可以大胆地试一下,看看哪种分法能保证找出次品而且称的次数最少。我们下节课继续研究这个问题。数学教学设计7

教学设计示例

运用公式法――完全平方公式(1)

教学目标

1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

2.理解完全平方式的意义和特点,培养学生的判断能力.

3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想,数学教案-运用公式法。

教学重点和难点

重点:运用完全平方式分解因式.

难点:灵活运用完全平方公式公解因式.

教学过程设计

一、复习

1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

2.把下列各式分解因式:

(1)a_4-a_2(2)16m4-n4.

解(1)a_4-a_2=a_2(_2-1)=a_2(_+1)(_-1)

(2)16m4-n4=(4m2)2-(n2)2

=(4m2+n2)(4m2-n2)

=(4m2+n2)(2m+n)(2m-n).

问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式.

请写出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

二、新课

和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

问:具备什么特征的多项是完全平方式?

答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

问:下列多项式是否为完全平方式?为什么?

(1)_2+6_+9;(2)_2+_y+y2;

(3)25_4-10_2+1;(4)16a2+1.

答:(1)式是完全平方式.因为_2与9分别是_的平方与3的平方,6_=2·_·3,所以

_2+6_+9=(_+3).

(2)不是完全平方式.因为第三部分必须是2_y.

(3)是完全平方式.25_=(5_),1=1,10_=2·5_·1,所以

25_-10_+1=(5_-1).

(4)不是完全平方式.因为缺第三部分.

请同学们用箭头表示完全平方公式中的a,b与多项式9_2+6_y+y2中的对应项,其中a=?b=?2ab=?

答:完全平方公式为:

其中a=3_,b=y,2ab=2·(3_)·y.

例1把25_4+10_2+1分解因式.

分析:这个多项式是由三部分组成,第一项“25_4”是(5_2)的平方,第三项“1”是1的平方,第二项“10_2”是5_2与1的积的2倍.所以多项式25_4+10_2+1是完全平方式,可以运用完全平方公式分解因式.

解25_4+10_2+1=(5_2)2+2·5_2·1+12=(5_2+1)2.

例2把1-m+分解因式.

问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2·1·+()2=(1-)2.

解法2先提出,则

1-m+=(16-8m+m2)

=(42-2·4·m+m2)

=(4-m)2.

三、课堂练习(投影)

1.填空:

(1)_2-10_+()2=()2;

(2)9_2+()+4y2=()2;

(3)1-()+m2/9=()2.

2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多

项式改变为完全平方式.

(1)_2-2_+4;(2)9_2+4_+1;(3)a2-4ab+4b2;

(4)9m2+12m+4;(5)1-a+a2/4.

3.把下列各式分解因式:

(1)a2-24a+144;(2)4a2b2+4ab+1;

(3)19_2+2_y+9y2;(4)14a2-ab+b2.

答案:

1.(1)25,(_-5)2;(2)12_y,(3_+2y)2;(3)2m/3,(1-m3)2.

2.(1)不是完全平方式,如果把第二项的“-2_”改为“-4_”,原式就变为_2-4_+4,它是完全平方式;或把第三项的“4”改为1,原式就变为_2-2_+1,它是完全平方式.

(2)不是完全平方式,如果把第二项“4_”改为“6_”,原式变为9_2+6_+1,它是完全平方式.

(3)是完全平方式,a2-4ab+4b2=(a-2b)2.

(4)是完全平方式,9m2+12m+4=(3m+2)2.

(5)是完全平方式,1-a+a2/4=(1-a2)2.

3.(1)(a-12)2;(2)(2ab+1)2;

(3)(13_+3y)2;(4)(12a-b)2.

四、小结

运用完全平方公式把一个多项式分解因式的主要思路与方法是:

1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.

2.在选用完全平方公式时,关键是看多项式中的第二项的`符号,如果是正号,则用公式a2+2ab+b2=(a+b)2;如果是负号,则用公式a2-2ab+b2=(a-b)2.

五、作业

把下列各式分解因式:

1.(1)a2+8a+16;(2)1-4t+4t2;

(3)m2-14m+49;(4)y2+y+1/4.

2.(1)25m2-80m+64;(2)4a2+36a+81;

(3)4p2-20pq+25q2;(4)16-8_y+_2y2;

(5)a2b2-4ab+4;(6)25a4-40a2b2+16b4.

3.(1)m2n-2mn+1;(2)7am+1-14am+7am-1;

4.(1)_-4_;(2)a5+a4+a3.

答案:

1.(1)(a+4)2;(2)(1-2t)2;

(3)(m-7)2;(4)(y+12)2.

2.(1)(5m-8)2;(2)(2a+9)2;

(3)(2p-5q)2;(4)(4-_y)2;

(5)(ab-2)2;(6)(5a2-4b2)2.

3.(1)(mn-1)2;(2)7am-1(a-1)2.

4.(1)_(_+4)(_-4);(2)14a3(2a+1)2.

课堂教学设计说明

1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.

2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.数学教学设计8

一、教学内容分析

长方形的面积计算是学生认识了长方形特征、知道了面积单位、学会用面积单位直接量面积的基础上教学的,是学生第一次学习平面图形的面积计算。学会长方形、正方形面积的计算,不仅是今后学习其它图形面积的重要基础,而且有助于发展学生的思维,培养学生的学习能力和空间观念。

二、学生情况分析

四年级在属小学中年级学段,学生开始对“有用”的数学更感兴趣,本课学习内容安排与呈现都能吸引学生学习的兴趣。人的智力是多元的,学生在发展上也是存在差异的,有的学生善于形象思维,有的善于逻辑推理,有的善于动手操作,分组活动、分工合作的学习方式更有利于调动学生学习的积极性,更容易使不同的学生在学习上获得成功的体验。学生总爱把自己当成探索者、研究者、发现者,所以本课以实验探究的形式使学生感受到学习具有一定的挑战性,符合四年级学生的心理特点。

三、教学目标

1、知识与技能:使学生理解长方形面积与长和宽之间的密切关系,理解面积公式的由来,掌握面积的计算方法。通过公式的推导,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。

2、过程与方法:在分组实验这一探究发现的过程中,学生通过自己动手和动脑,获得了认识。并经过启发、讨论和独立思考、学生主动参与、积极探究,获得了长方形面积计算的方法,学生认识水平、实践能力和创新意识从中得到了培养。

3、情感、态度与价值观:让学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。学会与人合作,并能与他人交流思维的过程和结果。

四、教学重难点:

教学重点:探究并掌握长方形的面积公式

教学难点:在操作中探究长方形的面积公式

五、课前准备:长6厘米、宽3厘米的长方形纸板,1平方厘米的'小正方形若干,实验记录表,实物投影。

六、教学过程:

(一)、创设情景,导入新课

师:同学们,上节课我们学习了有关面积的知识,常用的面积单位有哪些?

生:常用的面积单位有:平方厘米、平方分米、平方米

师:学习面积单位有什么用?

生:测量面积

出示长方形纸板

师:要测量它的面积,你认为用哪个面积单位比较合适?如何测量它的面积呢?

学生选择合适的面积单位,测量长方形的面积。

师:用面积单位直接去量,可以看到这个长方形的面积,但是在实际生活中,如测量操场的面积,教室的面积;草地的面积;等等,也用面积单位一个一个去量,那可就麻烦了,所以我们要寻找一种更好、更简便的方法来计算面积。

这节课,我们就来研究长方形面积的计算。

(设计意图:复习旧知的目的,唤起学生已有的知识经验,把握好教学的起点,抓住生活中的几个场景,引起学生学习新知的欲望)

(二)、自主探究

师:请同学们大胆的猜测,长方形的面积和什么有关系?

(学情预设:根据学生对长方形的认识和理解,可能会出现这几种情况:和长有关、和宽有关,和长、宽都有关,和周长有关)

(设计意图:鼓励学生大胆地猜想,唤起学生主动参与学习探究知识的欲望,也培养了学生大胆探究,敢于猜想的精神)

(三)、实践探究,合作交流

师:你们的猜测是否正确呢?现在就请同学们带上老师温馨的提示踏上探究之旅。

出示导学提示:

1、以小组为单位,合作搭建3个长方形,完成实验记录表。

2、仔细观察记录表,你发现了什么?

3、尝试用比较规范的数学语言表达实验过程及实验结论。

(学情预设:学生在组长的组织下,合理分工,有序地开展实验)

(设计意图:创设条件让学生动手操作,自主探究活动中亲身经历知识的形成过程,借助导学提示经过启发,独立思考,讨论,学生主动参与,积极探究,丛冢提高认知水平,实践能力和创新意识)

(四)、展示成果,全班交流

各小组派代表到台前展示实验记录,并发言

(学情预设:各小组介绍搭建的3个长方形的长、宽、面积各是多少,通过三次实验,发现长方形的面积等于长乘宽,对表达流畅,思路清晰的小组给予表扬)

如:我们组共搭建了3个长方形,第一个长方形的长是3厘米,宽为2厘米,面积是6平方厘米;第二个长方形的长是4厘米,宽是3厘米,面积是12平方厘米;第三个……通过三次实验,我们发现长方形的面积等于长乘宽。

(五)、解决问题

1、实践活动

在我们这间教室里,有很多物体的表面是长方形的,请大家任选一个,先估计它的面积是多少,在量出它的长和宽,计算出它的面积,考考你的眼力,看看估计的和算出的面积是不是较接近。(学生操作活动,并利用长方形面积公式正确计算出它们的面积)

2、前几天,老师新换了一个办公桌,它的长是14分米,宽是8分米,我想给这张办公桌配一块玻璃,需要买多大的玻璃板呢?

3、思考题:

这是一块打碎的玻璃,你能求出它原来的面积是多少吗?说说你的想法。

(设计意图:让学生在解决实际问题中巩固新知,使学生感受到数学与生活的联系以及数学的价值,既丰富了叙述的生活经验,同时又提高另外学生解决实际问题的能力。)

(六)、拓展延伸

在我们的生活中有很多物体的表面并不是长方形的,如正方形的面积怎样求呢?它的面积计算公式是怎样的呢?再如三角形,我们怎样可以知道它的面积呢?如果大家有兴趣的话,可以在课后研究)

(设计意图:鼓励学生大胆探究,培养探究意识和实际操作能力)

七、教学反思

1、方法比知识更重要

小学数学新课程标准在数学新教学价值观中要求:"方法比知识更重要",本节课教师改变了传统的“传递——接受”式模式,尝试采用"自主探究式"教学模式,贯穿“实验-发现-验证”思路,整节课教学过程注重了学习方法,思维方法,探索方法的获取,让学生主动获取知识,同时也让学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,这也就是贯彻新课程标准的充分体现。“实验--发现--验证”的学习方法的指导对学生今后的发展来说非常重要。

2、学会与人分工合作

本节课通过小组合作,运用不同的实验材料和方法,共同探究长方形和正方形面积计算的方法,开放了获取新知的整个教学过程。小组合作学习是指根据学生能力、性格等因素将学生异质分组,以学生学习小组为教学组织手段,通过指导小组成员开展合作学习,发挥群体的积极功能,提高个体学习的动力和能力,并达成团体目标。由于小组成员各有其职,且职责分明,因此学生都主动投入;学生的全面互动,也可以弥补教师一个人不能面向每个学生进行教学的不足。小组合作学习又是以个体学习为基础的,让不同个性、不同学力的学生都能自主地、自发地参加学习和交流,真正提高了每个学生的学习效率,真正实现“不同的人在数学上得到不同的发展”。

3、知识运用于实际生活

通过自主探究,获得长方形面积的计算公式后,教者设计了一些应用性练习,如计算学校操场的面积等,引导学生将获得的知识运用于实际生活,通过实际问题的解决,学生将书本知识转化为能力。?这个实际生活问题得以解决,既丰富了学生的生活经验,同时又提高了学生解决实际问题的能力。

4、培养实践能力和创新意识

在探究、发现的过程中,学生通过自己动手和动脑,获得了感性认识。并经过启发、讨论和独立思考,学生主动参与、积极探究,获得了长方形面积计算的方法,学生认识水平、实践能力和创新意识得到了培养。数学教学设计9

数学教学设计是面向教学系统,解决教与学的问题,为促进学生学习和成长而设计的一套系统过程。它是课堂教学的蓝本,是落实教学理念和指导教学行为的方案,是提高课堂教学效率、促进学生全面发展的前提和保证。中学数学教学设计是一门科学,必须遵循一定的教育、教学规律,依据课程内容、学生特征和环境条件,运用教与学的原理,策划师生学习互动活动;它也是一门艺术,必须融人设计者的丰富经验,分析教学中的问题和生成的可能,设计出有效解决数学教学的方法和策略。

一、强化基础学情分析找准教学设计的落脚点

学情分析是教学设计的重要组成部分,与教学设计的其他内容有着紧密的联系。是教学目标设定的基础,是教学内容分析的依据,是教学策略选择和教学活动设计的落脚点,学情分析是对以学生为中心的教学理念的具体落实。

1,学生的知识储备。新数学课程标准指出:“要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”学生在学习新知时,一般会受到旧知的影响,在旧知的基础上,认识新知,重构知识网络。数学教师在教学设计前,要加强对学生知识背景进行有效分析,包括对学生已具备的有利于新知识获得的旧知识的分析,还要对不利于新知识获得的旧知的分析。因此,数学教师要结合学生已有的知识储备,来设计富有情趣和针对性的数学教学活动。

2.学生的思维能力。埃德.拉宾诺威克兹在《思维.学习.教学》一书中说:“作为教师,我们教儿童。既然我们教儿童,那我们就要了解儿童怎样思维,儿童怎样学习。”许多数学教师在进行教学设计时,往往关注的是“怎样教”,而忽视学生“怎样学”。新数学课程标准明确指出:“要注重启迪和发展学生思维,使学生数学思维能力得到形成和发展。”因此,小学数学教师在进行教学设计时,要充分关注、分析学生已具有的思维能力和思维方式,使教学设计与学生的思维方式有效对接。另外,对学生学习态度、学习兴趣的分析也是不能忽视的内容。

3.学生的数学素养。为学生数学素养的判断提供了理论基础及基本思路,准确地判断学生的起始数学素养是进行有效教学设计的前提。学生的综合素养不仅仅在于掌握多少数学知识,也不在于能解决多少道数学难题,而是关注他们能否运用数学思想方法解决实际问题,形成进一步学习研究的能力。因此,教师要根据各个学生的能力差异,设计有针对性、实效性的教学内容,教学内容的设计不能过高,也不能降低教学要求,要做到因材施教,使设计的教学内容在学生的最近发展区内。帮助学生掌握学习数学的方法,培养学习数学的能力,加强学法的指导,切实提高学生的数学素养。

二、优化教学内容设计找准教学设计的基本点

优化教学内容,要根据教学目标和学生实际,运用现代化的教学手段和教学方法,对教材进行整合、开发、创新处理,以分散教材的难度,减缓知识的坡度,使教学内容更趋于合理,让教材的教育教学功能得到充分体现,切实提高教学效率。

1.处理好四维目标。义务教育阶段的数学课程,根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,确立了“知识与技能”“数学思考”“解决问题”“情感与态度”等四维目标。体现了数学教学不只是为了提高学生的基础知识和基本技能,而且要使学生在数学学习中,获得基本的数学思想方法和应用技能,体会数学与社会生活的联系,加深对数学的了解,产生浓厚的学习兴趣,提高学生的数学素养。但是四维目标,只是课程设计和教学设计的总体目标,不是每节课设计的具体目标,在具体的教学设计过程中,要进行分解、细化,生成具有导向性的具体目标。

2.设计好教学目标。教学目标既是教学活动的出发点,也是方向。小学数学教学目标不仅包括知识和技能,还包括数学思考、解决问题以及学生对数学的情感与态度等方面的要求。对目标的不同理解会形成不同的教学设计,从而形成不同水平的课堂教学。

在进行小学数学教学设计时,要紧紧围绕“三维教学目标”,即“从知识与技能、过程与方法、情感态度与价值观”这三个维度来设计教学内容。在设计中要做到重“知识”,也要重“技能”;重“过程”也要重“方法”;还要重“情感、态度、价值观”,注意“三维教学目标”是一个不可分割的整体。

3.组织好教学内容。教材是教师教学的一种依据,是学生从事数学活动、实现学习目标的重要资源。教材内容是一个静止的知识库,与学生接受知识的动态过程不可能完全吻合。有效地组织教学内容是教学设计的一项重要工作。设计前教者要分析教材的编写特点,领会编者的意图,把握教学内容在整个教学体系中的地位和作用。要根据学生的认知规律,注意知识的呈现顺序,即先出现什么,再出现什么。要分析教学中的重点和难点。在设计相应的练习时,要加强练习题的针对性、有层次性,真正达到知识的形成、巩固与应用的目的。所以教师要从学生实际出发,创造性地使用教材,大胆取舍教材内容,可打破章节顺序,进行有选择的、科学的再创造、再加工,合理优化教材结构。

三、优化学生学习方式找准教学设计的关键点

教学目标能否实现,很大程度上取决于教师教学方法和学生学习方法的选择。教师要重视学法的指导,让学生的学习方法产生实质性的变化,提倡“动手实践、合作交流、自主探究”,逐步改变教师讲、学生听、不停练的局面,促进学生创新意识和实践能力的发展。

1.动手实践。动手实践是学生学习数学的重要途径和方法之一,在小学数学教学中起着十分重要的作用,它是用外显的.动作来驱动内在的思维活动,从中感悟、理解知识的形成,体会数学学习的方法与过程。在教学设计中,教师要结合教材特点、学生年龄特征,恰当地运用直观操作,师生互动,让学生运用多种感官参与学习。

2.自主探究。探索是数学的生命线。探究性学习应成为课堂教学实施创新学习的重点。对于教材中那些后继性较强的教学内容,就应大胆放手让学生自己去探索,去发现。学生学习数学知识,本来就应是主动地构建知识的过程。创设有效的探索场,是学生进行有效探索的前提和保证,教师要对教学内容进行有效的开发,要勇于创新,在吃透教材、吃透学生的情况下,不断创设行之有效的探索场。当然,在课堂教学设计中,在不同教学阶段创设不同的探索场,给教师们提出了更高的要求。事实证明,经常创设不同的探索场,能达到事半功倍的教学效果。

3.合作交流。当今时代科学研究的主要方式是集体研究,通常组建研究小组,按一定的方案,合作有序地研究并最终达到研究的目的。合作学习体现了教学活动中各动态因素的多边互动,尤其是生生互动,对于发挥学生的学习积极性、主动性、创造性起到了不可替代的作用。在教学设计中要合理设计合作交流活动,当学生自己独立解决某个问题遇到困难,需要他人帮助时,主要在教学的重点与难点处,在知识易混淆处,在概念、公式、规律的探索与归纳的过程中,而且要对合作交流中可能出现的情况加以预测与估计,为它们预设好通道,预留足时间,才能收到事半功倍的教学效果。

四、优化课堂教学流程找准教学设计的着力点

教无定法,但要得法。任何新知的教学都要通过一定的教学程序来实现。教学程序应体现所教知识的特点,并符合儿童的认知规律。显然,教学程序应有一定的规律性和科学性。因此,要提高教学效率,必须优化教学程序,可采取一些有效的措施,进行个性化的教学设计,弹性化的教学设计。叶澜指出:在教学过程中要强调课的动态生成,要求教学方案的设计应“着眼于整体,立足于个体,致力于主体”,重在大环节的策划上,让过程的设计具有一定的弹性,为学生参与留出足够的时间与空间,改变过去课堂活动以教师为中心、学生围着老师转的格局,为教学过程的动态生成创造条件。鼓励学生主动探索、大胆质疑,让师生在互动中实现智慧的碰撞、情感的交融和心灵的沟通,使课堂成为一个有丰富内涵的个性舞台。

开放式的教学设计,让学生自己发现问题、分析问题、解决问题。改变传统的教学模式,摒弃单调、生硬的一面。组织开放性教学,教师要把握好教学内容,激发学生学习的积极性,提供学生充分从事数学活动的机会,积极地为学生创设开放的学习氛围,让每个学生在探索中成长。真正实现人人学有价值的数学,人人都能获得必需的数学,让不同的人在数学上得到不同的发展。

以人为本的教学设计,要优化课堂导入,重视诱发学生的情感,激发学生学习的兴趣。教学过程设计中,要注意使学生生动活泼地学习,在快乐的身心交流中学习、成长。设计的评价过程,要促进学生的主体发展,成为整个教学活动的一种“润滑剂”。只有这样才能实现开展有效教学,提高教学质量的目标!数学教学设计10

教学目标:

能熟练地根据抛物线的定义解决问题,会求抛物线的焦点弦长。

教学重点:

抛物线的标准方程的有关应用。

教学过程:

一、复习:

1、抛物线的定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线。点F叫做抛物线的焦点,直线l叫做抛物线的准线。

2、抛物线的标准方程:

二、新授:

例1、点M与点F(4,0)的距离比它到直线l:_+5=0的距离小1,求点M的轨迹方程。

解:略

例2、已知抛物线的顶点在原点,对称轴为_轴,抛物线上的点M(—3,m)到焦点的距离等于5,求抛物线的方程和m的值。

解:略

例3、斜率为1的直线经过抛物线的焦点,与抛物线相交于两点A、B,求线段AB的长。

解:略

点评:1、本题有三种解法:一是求出A、B两点坐标,再利用两点间距离公式求出AB的长;二是利用韦达定理找到_1与_2的关系,再利用弦长公式|AB|=求得,这是设而不求的思想方法;三是把过焦点的弦分成两个焦半径的和,转化为到准线的.距离。

2、抛物线上一点A(_0,y0)到焦点F的距离|AF|=这就是抛物线的焦半径公式,焦点弦长|AB|=_1+_2+p。

例4、在抛物线上求一点P,使P点到焦点F与到点A(3,2)的距离之和最小。

解:略

三、做练习:

第119页第5题

四、小结:

1、求抛物线的标准方程需判断焦点所在的坐标轴和确定p的值,过焦点的直线与抛物线的交点问题有时用焦点半径公式简单。

2、焦点弦的几条性质:设直线过焦点F与抛物线相交于A(_1,y1),B(_2,y2)两点,则:①;②;③通径长为2p;④焦点弦长|AB|=_1+_2+p。

五、布置作业:

习题8.5第4、5、6、7题。数学教学设计11

教学内容:

镜子中的数学(北师大版数学三年级下册25—26页)

教学目标:

1、结合实例和具体活动,感知镜面对称现象

2、经历探索镜面对称现象的一些特征的过程发展空间知觉和空间观念

教学重点:

感知镜面对称现象

难点:

发展空间知觉和空间观念

教学准备:

师用的示范镜子,学生每人一面小镜子

教学过程:

一、操作导入:

①出示镜子,引导学生照身边的物体,说说你有什么发现。

②小组同学互相说说你的发现

③全班同学汇报

二、探究验证:

①用镜子完成P17“试一试”第(1)题看看整个图形是什么,看和你的'发现是不是一样。

②同桌互相合作,完成第(2)题,摆一摆,看一看,你发现了什么。

③帮助机灵狗:

在观察机灵狗的发现,看看是不是对呢?

三、巩固应用:

1、完成P18“练一练”第1题

先想想,再用镜子验证一下你的选择是否正确

2、把镜子放在图中适当的位置,使你们能看到图的全部

四、实践活动

利用周末的时间,收集对称的图形,图案和照片在全班交流展览。数学教学设计12

活动目标

1、认识心形,三角形,星形的形状特征。

2、学习按形状特征进行分类。

3、培养幼儿的观察能力和辨别能力。

活动重点:

学习按形状进行分类。

活动难点:

幼儿根据不同形状进行分类。

活动准备

1.挂图,心形,三角形,星形图卡。

2.音乐《找朋友》

活动过程

1.师幼问好

2.学习心形,三角形,星形名称。

(1)师:请小朋友看一看这是什么图形?出示心形图片,它像什么?引导幼儿说出像爱心,所以它叫心形。

(2)师:出示三角形图卡,引导幼儿认识三角形。

(3)师:出示星形图卡,引导幼儿认识它的形状名称。

3.学习按形状特征进行分类

(1)出示挂图,引导幼儿观察画面中人物身上的符号。

A.师:请小朋友看一看画面中3个爸爸身上分别是什么图形?(抽幼儿说)

B.师:请小朋友看一看图中3个妈妈身上分别是什么图形?

C.师:请小朋友看一看图中3个宝宝身上分别是什么图形?

(2)按形状进行连线

A.引导幼儿把身上形状相同符号的'爸爸、妈妈、宝宝一家三口人用线连起来。

B.师:请小朋友说一说,为什么这样连?(引导幼儿说出它们身上都有__图形)

C.请小朋友给三角形、星形一家人连线。

4.学习按形状特征进行分类

请小朋友把相同符号的一家人贴在一起。

5.游戏找朋友播放音乐《找朋友》

请小朋友根据自己身上贴的图形卡片找到相同符号的小朋友。数学教学设计13

一、教学内容分析:

本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析:

任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想

本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标

通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

五、教学重点与难点

重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的`形成与逻辑思维能力的培养。

六、教学过程设计

(一)知识准备、新课引入

提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示)a??

提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]

(二)判定定理的探求过程

1、直观感知

提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?

生1:例举日光灯与天花板,树立的电线杆与墙面。

生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。

[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]

2、动手实践

教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。

[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]

3、探究思考

(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行

(2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?

4、归纳确认:(多媒体幻灯片演示)

直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。

简单概括:(内外)线线平行?线面平行a符号表示:ba||?a||b??

温馨提示:

作用:判定或证明线面平行。

关键:在平面内找(或作)出一条直线与面外的直线平行。

思想:空间问题转化为平面问题

(三)定理运用,问题探究(多媒体幻灯片演示)

1、想一想:

(1)判断下列命题的真假?说明理由:

①如果一条直线不在平面内,则这条直线就与平面平行()

②过直线外一点可以作无数个平面与这条直线平行()

③一直线上有二个点到平面的距离相等,则这条直线与平面平行()

(2)若直线a与平面?内无数条直线平行,则a与?的位置关系是()a、a||?b、a??c、a||?或a??d、a??[学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]

2、作一作:

设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?

先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。

[设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]

3、证一证:

例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef||平面bcd。

变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。

[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef||平面bdd1b1分析:根据判定定理必须在平

面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。

思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。

思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。

[知识链接:根据空间问题平面化的思想,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论