版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大庆市四中2024学年数学高三第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数x,y满足,则的最小值等于()A. B. C. D.2.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A. B. C. D.3.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种5.设函数的导函数,且满足,若在中,,则()A. B. C. D.6.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8 B.7 C.6 D.47.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.8.已知数列,,,…,是首项为8,公比为得等比数列,则等于()A.64 B.32 C.2 D.49.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则()A. B.C. D.10.已知复数(为虚数单位)在复平面内对应的点的坐标是()A. B. C. D.11.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是()A. B. C.10 D.12.已知向量,满足||=1,||=2,且与的夹角为120°,则=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.14.的展开式中的常数项为______.15.在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y-2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为_____.16.已知双曲线的一条渐近线经过点,则该双曲线的离心率为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.18.(12分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.19.(12分)已知等比数列是递增数列,且.(1)求数列的通项公式;(2)若,求数列的前项和.20.(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.21.(12分)已知函数()(1)函数在点处的切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.22.(10分)如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)证明;AC⊥BP;(Ⅱ)求直线AD与平面APC所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
设,,去绝对值,根据余弦函数的性质即可求出.【题目详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【题目点拨】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.2、C【解题分析】
如图所示:切点为,连接,作轴于,计算,,,,根据勾股定理计算得到答案.【题目详解】如图所示:切点为,连接,作轴于,,故,在中,,故,故,,根据勾股定理:,解得.故选:.【题目点拨】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.3、B【解题分析】
或,从而明确充分性与必要性.【题目详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【题目点拨】本题考查充分性与必要性,简单三角方程的解法,属于基础题.4、B【解题分析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【题目详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【题目点拨】本题考查排列组合,属于基础题.5、D【解题分析】
根据的结构形式,设,求导,则,在上是增函数,再根据在中,,得到,,利用余弦函数的单调性,得到,再利用的单调性求解.【题目详解】设,所以,因为当时,,即,所以,在上是增函数,在中,因为,所以,,因为,且,所以,即,所以,即故选:D【题目点拨】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.6、A【解题分析】
则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【题目详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【题目点拨】本小题主要考查正方体有关计算,属于基础题.7、A【解题分析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【题目详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【题目点拨】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.8、A【解题分析】
根据题意依次计算得到答案.【题目详解】根据题意知:,,故,,.故选:.【题目点拨】本题考查了数列值的计算,意在考查学生的计算能力.9、A【解题分析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.10、A【解题分析】
直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.【题目详解】解:,在复平面内对应的点的坐标是.故选:A.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.11、D【解题分析】
直接根据几何概型公式计算得到答案.【题目详解】根据几何概型:,故.故选:.【题目点拨】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.12、D【解题分析】
先计算,然后将进行平方,,可得结果.【题目详解】由题意可得:∴∴则.故选:D.【题目点拨】本题考查的是向量的数量积的运算和模的计算,属基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【题目详解】解:由题可知,不等式对于任意恒成立,即,又因为,,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,,则,即:,所以实数的取值范围:.故答案为:.【题目点拨】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.14、160【解题分析】
先求的展开式中通项,令的指数为3即可求解结论.【题目详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【题目点拨】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题.15、【解题分析】分析:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),利用差角的正切公式,结合以AB为直径的圆与圆x2+(y-2)2=1相外切.且∠APB的大小恒为定值,即可求出线段OP的长.详解:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),则∵∠APB的大小恒为定值,
∴t=,∴|OP|=.故答案为点睛:本题考查圆与圆的位置关系,考查差角的正切公式,考查学生的计算能力,属于中档题.16、【解题分析】
根据双曲线方程,可得渐近线方程,结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.【题目详解】因为双曲线为,所以该双曲线的渐近线方程为.又因为其一条渐近线经过点,即,则,由此可得.故答案为:.【题目点拨】本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.(2)见解析【解题分析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望.试题解析:(Ⅰ)根据已知数据得到如下列联表:甲地乙地总计长纤维91625短纤维11415总计212141根据列联表中的数据,可得所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.(Ⅱ)由表可知在8根中乙地“短纤维”的根数为,的可能取值为:1,1,2,3,,,,.∴的分布列为:1123∴.18、(1)答案不唯一,具体见解析(2)证明见解析【解题分析】
(1)根据题意得,分与讨论即可得到函数的单调性;(2)根据题意构造函数,得,参变分离得,分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.【题目详解】(1)依题意,当时,,①当时,恒成立,此时在定义域上单调递增;②当时,若,;若,;故此时的单调递增区间为,单调递减区间为.(2)方法1:由得令,则,依题意有,即,要证,只需证(不妨设),即证,令,设,则,在单调递减,即,从而有.方法2:由得令,则,当时,时,故在上单调递增,在上单调递减,不妨设,则,要证,只需证,易知,故只需证,即证令,(),则==,(也可代入后再求导)在上单调递减,,故对于时,总有.由此得【题目点拨】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.19、(1)(2)【解题分析】
(1)先利用等比数列的性质,可分别求出的值,从而可求出数列的通项公式;(2)利用错位相减求和法可求出数列的前项和.【题目详解】解:(1)由是递增等比数列,,联立,解得或,因为数列是递增数列,所以只有符合题意,则,结合可得,∴数列的通项公式:;(2)由,∴;∴;那么,①则,②将②﹣①得:.【题目点拨】本题考查了等比数列的性质,考查了等比数列的通项公式,考查了利用错位相减法求数列的前项和.20、(1)①当时,在上单调递减,在上单调递增;②当时,在上单调递增;(2).【解题分析】
(1)求出函数的定义域和导函数,,对讨论,得导函数的正负,得原函数的单调性;(2)法一:由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得,可得的范围;法二:由得,化为令(),研究函数的单调性,可得的取值范围.【题目详解】(1)的定义域为,,①当时,由得,得,在上单调递减,在上单调递增;②当时,恒成立,在上单调递增;(2)法一:由得,令(),则,在上单调递减,,,即,令,则,在上单调递增,,在上单调递减,所以,即,(*)当时,,(*)式恒成立,即恒成立,满足题意法二:由得,,令(),则,在上单调递减,,,即,当时,由(Ⅰ)知在上单调递增,恒成立,满足题意当时,令,则,所以在上单调递减,又,当时,,,使得,当时,,即,又,,,不满足题意,综上所述,的取值范围是【题目点拨】本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.21、(1)极小值为,极大值为.(2)【解题分析】
(1)根据斜线的斜率即可求得参数,再对函数求导,即可求得函数的极值;(2)根据题意,对目标式进行变形,构造函数,根据是单调减函数,分离参数,求函数的最值即可求得结果.【题目详解】(1)函数的定义域为,,,,可知,,解得,,可知在,时,,函数单调递增,在时,,函数单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度酒店客房升级改造项目股权转让合同3篇
- 2025版智能化厂房买卖合同示范文本4篇
- 2025年度林权资产评估与咨询服务合同4篇
- 2025年艺术品抵押贷款服务标准合同范本3篇
- 2025年林业资源监测与评估承包合同范本4篇
- 二零二五版洗碗工劳动合同与劳动技能鉴定服务协议3篇
- 2025年度马赛克瓷砖批发及售后服务合同4篇
- 2025年厂房设备改造承包合同协议书4篇
- 2025年度消防防排烟系统部件销售及安装服务合同3篇
- 专利转让合同协议完整版
- 停车场施工施工组织设计方案
- GB/T 37238-2018篡改(污损)文件鉴定技术规范
- 普通高中地理课程标准简介(湘教版)
- 河道治理工程监理通知单、回复单范本
- 超分子化学简介课件
- 高二下学期英语阅读提升练习(一)
- 易制爆化学品合法用途说明
- 【PPT】压力性损伤预防敷料选择和剪裁技巧
- 大气喜庆迎新元旦晚会PPT背景
- DB13(J)∕T 242-2019 钢丝网架复合保温板应用技术规程
- 心电图中的pan-tompkins算法介绍
评论
0/150
提交评论