新疆维吾尔自治区吐鲁番市高昌区第二中学2024年高二上数学期末复习检测模拟试题含解析_第1页
新疆维吾尔自治区吐鲁番市高昌区第二中学2024年高二上数学期末复习检测模拟试题含解析_第2页
新疆维吾尔自治区吐鲁番市高昌区第二中学2024年高二上数学期末复习检测模拟试题含解析_第3页
新疆维吾尔自治区吐鲁番市高昌区第二中学2024年高二上数学期末复习检测模拟试题含解析_第4页
新疆维吾尔自治区吐鲁番市高昌区第二中学2024年高二上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆维吾尔自治区吐鲁番市高昌区第二中学2024年高二上数学期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面直角坐标系内一动点P,满足圆上存在一点Q使得,则所有满足条件的点P构成图形的面积为()A. B.C. D.2.如图,直四棱柱的底面是菱形,,,M是的中点,则异面直线与所成角的余弦值为()A. B.C. D.3.下列命题中正确的是A.命题“若,则”的否命题为:“若,则”B.若命题,是假命题,则实数C.“”的一个充分不必要条件是“”D.命题“若,则”的逆否命题为真命题4.曲线的一个焦点F到两条渐近线的垂线段分别为FA,FB,O为坐标原点,若四边形OAFB是菱形,则双曲线C的离心率等于()A. B.C.2 D.5.已知不等式只有一个整数解,则m的取值范围是()A. B.C. D.6.围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,规定甲与乙对阵,丙与丁对阵,两场比赛的胜者争夺冠军,根据以往战绩,他们之间相互获胜的概率如下:甲乙丙丁甲获胜概率乙获胜概率丙获胜概率丁获胜概率则甲最终获得冠军的概率是()A.0.165 B.0.24C.0.275 D.0.367.已知是两个数1,9的等比中项,则圆锥曲线的离心率为()A.或 B.或C. D.8.若命题p为真命题,命题q为假命题,则下列命题为真命题的是()A. B.C. D.9.由小到大排列的一组数据:,其中每个数据都小于,另一组数据2、的中位数可以表示为()A. B.C. D.10.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.311.已知命题:,;命题:,使,若“”为假命题,则实数的取值范围是()A. B.C. D.12.过抛物线的焦点作直线l,交抛物线与A、B两点,若线段中点的纵坐标为3,则等于()A.10 B.8C.6 D.4二、填空题:本题共4小题,每小题5分,共20分。13.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.14.长方体中,,,已知点H,A,三点共线,且,则点H到平面ABCD的距离为______15.已知正方体的棱长为6,E为棱的中点,F为棱上的点,且,则___________.16.函数在处切线的斜率为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求函数的单调区间;(2)若函数在其定义域上是增函数,求实数的取值范围.18.(12分)若数列的前n项和满足,(1)求的通项公式;(2)设,求数列的前n项和19.(12分)已知圆的圆心在直线,且与直线相切于点.(1)求圆的方程;(2)直线过点且与圆相交,所得弦长为,求直线的方程.20.(12分)已知公差大于零的等差数列的前项和为,且满足,,(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数;21.(12分)在矩形中,是的中点,是上,,且,如图,将沿折起至:(1)指出二面角的平面角,并说明理由;(2)若,求证:平面平面;(3)若是线段的中点,求证:直线平面;22.(10分)在平面直角坐标系xOy中,椭圆C的左,右焦点分别为F1(﹣,0),F2(,0),且椭圆C过点(﹣).(1)求椭圆C的标准方程;(2)设过(0,﹣2)的直线l与椭圆C交于M,N两点,O为坐标原点,若,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】先找临界情况当PQ与圆C相切时,,进而可得满足条件的点P形成的图形为大圆(包括内部),即求.【题目详解】当PQ与圆C相切时,,这种情况为临界情况,当P往外时无法找到点Q使,当P往里时,可以找到Q使,故满足条件的点P形成的图形为大圆(包括内部),如图,由圆,可知圆心,半径为1,则大圆的半径为,∴所有满足条件的点P构成图形的面积为.故选:D.【题目点拨】关键点点睛:本题的关键是找出临界情况时点所满足的条件,进而即可得到动点满足条件的图形,问题即可解决.2、D【解题分析】用向量分别表示,利用向量的夹角公式即可求解.【题目详解】由题意可得,故选:D【题目点拨】本题主要考查用向量的夹角公式求异面直线所成的角,属于基础题.3、C【解题分析】.命题的否定是同时否定条件和结论;.将当成真命题解出的范围,再取补集即可;.求出“”的充要条件再判断即可;.判断原命题的真假即可【题目详解】解:对于A:命题“若,则”的否命题为:“若,则“,故A错误;对于B:当命题,是真命题时,,所以,又因为命题为假命题,所以,故B错误;对于C:由“”解得:,故“”是“”的充分不必要条件,故C正确;对于D:因为命题“若,则”是假命题,所以其逆否命题也是假命题,故D错误;故选:C4、A【解题分析】依题意可得为正方形,即可得到,从而得到双曲线的渐近线为,即可求出双曲线的离心率;【题目详解】解:依题意,,且四边形为菱形,所以为正方形,所以,即双曲线的渐近线为,即,所以;故选:A5、B【解题分析】依据导函数得到函数的单调性,数形结合去求解即可解决.【题目详解】不等式只有一个整数解,可化为只有一个整数解令,则当时,,单调递增;当时,,单调递减,则当时,取最大值,当时,恒成立,的草图如下:,,则若只有一个整数解,则,即故不等式只有一个整数解,则m的取值范围是故选:B6、B【解题分析】先求出甲第一轮胜出的概率,再求出甲第二轮胜出的概率,即可得出结果.【题目详解】甲最终获得冠军的概率,故选:B.7、A【解题分析】根据题意可知,当时,根据椭圆离心率公式,即可求出结果;当时,根据双曲线离心率公式,即可求出结果.【题目详解】因为是两个数1,9的等比中项,所以,所以,当时,圆锥曲线,其离心率为;当时,圆锥曲线,其离心率为;综上,圆锥曲线的离心率为或.故选:A.8、B【解题分析】根据逻辑联结词“且”,一假则假,对四个选项一一判断直接即可判断.【题目详解】逻辑联结词“且”,一假则假.因为命题p为真命题,命题q为假命题,所以为假命题,为真命题.所以,为假,故A错误;为真,故B正确;为假,故C错误;为假,故D错误.故选:B9、C【解题分析】先根据题意对数据进行排列,然后由中位数的定义求解即可【题目详解】因为由小到大排列的一组数据:,其中每个数据都小于,所以另一组数据2、从小到大的排列为,所以这一组数的中位数为,故选:C10、C【解题分析】根据题意设设,根据题意得到,进而求得离心率【题目详解】根据题意得到设,因为,所以,所以,则故选:C.11、D【解题分析】根据题意,判断命题和的真假性,结合判别式与二次函数恒成立问题,即可求解.【题目详解】根据题意,由为假命题可得“”为真命题,即p、q都为真命题,故,解得故选:D12、B【解题分析】根据抛物线的定义求解【题目详解】抛物线的焦点为,准线方程为,设,则,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、6【解题分析】由椭圆方程得到F,O的坐标,设P(x,y)(-2≤x≤2),利用数量积的坐标运算将·转化为二次函数最值求解.【题目详解】由椭圆+=1,可得F(-1,0),点O(0,0),设P(x,y)(-2≤x≤2),则·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,当x=2时,·取得最大值6.故答案为:6【题目点拨】本题主要考查平面向量的数量积及应用以及椭圆的几何性质和二次函数求最值,还考查了运算求解的能力,属于中档题.14、【解题分析】在长方体中,以点A为原点建立空间直角坐标系,利用已知条件求出点H的坐标作答.【题目详解】在长方体中,以点A为原点建立如图所示的空间直角坐标系,则,,因点H,A,三点共线,令,点,则,又,则,解得,所以点到平面ABCD的距离为.故答案为:15、18【解题分析】建立空间直角坐标系,利用空间向量的数量积运算求解.【题目详解】建立如图所示空间直角坐标系:则,所以,所以,故答案为:1816、1【解题分析】求得函数的导数,计算得,即可得到切线的斜率【题目详解】由题意,函数,则,所以,即切线的斜率为1,故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在、上递增,在上递减;(2).【解题分析】【小问1详解】由题设,且定义域为,则,当或时,;当时,.所以在、上递增,在上递减.【小问2详解】由题设,在上恒成立,所以在上恒成立,当时,满足题设;当时,,可得.综上,.18、(1)(2)【解题分析】(1)根据递推关系结合等比数列的定义可求解;(2)根据(1)化简,利用裂项相消法求出数列的前n项和.小问1详解】当时,,所以,即,当时,,得,则所以数列是首项为﹣1,公比为3的等比数列所以【小问2详解】由(1)得:所以,所以19、(1)(2)或【解题分析】(1)分析可知圆心在直线上,联立两直线方程,可得出圆心的坐标,计算出圆的半径,即可得出圆的方程;(2)利用勾股定理求出圆心到直线的距离,然后对直线的斜率是否存在进行分类讨论,设出直线的方程,利用点到直线的距离公式求出参数,即可得出直线的方程.【小问1详解】解:过点且与直线垂直的直线的方程为,由题意可知,圆心即为直线与直线的交点,联立,解得,故圆的半径为,因此,圆的方程为.【小问2详解】解:由勾股定理可知,圆心到直线的距离为.当直线的斜率不存在时,直线的方程为,圆心到直线的距离为,满足条件;当直线的斜率存在时,设直线的方程为,即,由题意可得,解得,此时,直线的方程为,即.综上所述,直线的方程为或.20、(1)(2)【解题分析】(1)利用等差数列的性质可得,联立方程可得,代入等差数列的通项公式可求;(2)代入等差数列的前和公式可求,进一步可得,然后结合等差数列的定义可得,从而可求.【题目详解】(1)为等差数列,,又是方程的两个根,(2)由(1)可知,为等差数列,舍去)当时,为等差数列,满足要求【题目点拨】本题主要考查了等差数列的定义、性质、通项公式、前项和公式的综合运用,属于中档题.21、(1)为二面角的平面角,理由见解析(2)证明见解析(3)证明见解析【解题分析】(1)根据,结合二面角定义得到答案.(2)证明平面得到,得到平面,得到证明.(3)延长,交于点,连接,证明即可.【小问1详解】连接,则,,故为二面角的平面角.【小问2详解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小问3详解】延长,交于点,连接,易知,故故是的中点,是线段的中点,故,平面,且平面,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论