版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.1多边形内角和第19章四边形沪科版八年级下学期课件情境引入学习目标1.掌握多边形的定义及有关概念,能区分凹凸多边形.2.会求多边形的对角线的条数.(难点)3.能通过不同方法探索多边形的内角和与外角和公式.(重点、难点)4.掌握正多边形的概念及内角的计算.(重点)5.了解四边形的不稳定性.导入新课情景引入在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?
中国第一奇村诸葛八卦村美国国防部大楼——五角大楼生活中的平面图形三角形
长方形
四边形
六边形
八边形情景导入
在平面内,由三条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做三角形.
在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形.
在平面内,由五条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做五边形.
在平面内,由四条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做四边形.自主学习顶点内角边对角线(连接不相邻两个顶点的线段)多边形的相关元素外角表示:五边形ABCDEACBDE如图1是凸多边形;图2不是凸多边形,今后如果不作说明,我们讲的多边形都是凸多边形.图2
如果把它任何一边双向延长,其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形.图1ACBDACBD相关概念
在多边形的顶点处一边与另一边的延长线所组成的角叫做这个多边形的外角.
在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.
如何求出任意五边形的内角和?你能想出几种办法?合作探究活动1:探究多边形的内角和多边形的边数456…n分成三角形的个数…多边形的内角和…234n-2360°540°720°(n-2)×180°
从多边形的一个顶点出发,引出所有的对角线,从而把多边形分割为多个三角形.定理:n边形的内角和等于(n-2)·180(n为不小于3的整数)说明:多边形的内角和仅与边数有关,与多边形的大小、形状无关.已知一个多边形,它的内角和等于900°,求这个多边形的边数.
解:设多边形的边数为n,因为它的内角和等于(n-2)•180°,所以,(n-2)•180°=900º
解得:n=7
这个多边形的边数为7.
有一张长方形的桌面,现在锯掉它的一个角,有几种情况?剩下的残余桌面的内角和为多少?思考题:三角形的外角和是多少度?你是怎样探究出来的?ABCDEF1.先把三角形的三个外角和三个内角这六个角的和求出来,刚好是三个平角.2.再用这六个角的和减去三个内角的和,剩下的就是三角形的外角和了!3×1800-(3-2)×1800=3600活动2:探究多边形的外角和那么你能研究出四边形的外角和吗?整体思路:1.先求4个外角+4个内角的和;2.再减去4个内角的和容易看出,4个外角+4个内角=4个平角而4个内角的和是(4-2)×180°,那么四边形的外角和就是4×180°-(4-2)×180°=
360°类比推理五边形的外角和是多少度?六边形的外角和是多少度?n边形的外角和是多少度?…5×1800-(5-2)×1800=36006×1800-(6-2)×1800=3600n×1800-(n-2)×1800=3600n边形的外角和等于360ْ理论证明:所以n个外角与n个内角的和是:n×1800,所以n边形外角和是:n×1800-(n-2)×1800=3600.而n边形的内角和是:(n-2)×1800因为n边形的每个外角与它相邻的内角互补(n≥3)知识要点变式:你能反过来由多边形外角和公式来推导多边形的内角和公式吗?n•1800-360º=n•1800-2×1800=(n-2)•1800分析:n×1800-(n-2)×1800例一个多边形的内角和等于它的外角和的3倍,它是几边形?解:设这个多边形的边数为n,则它的内角和等于(n-2)•180°,因为外角和等于360º,所以(n-2)•180°=3×360º
n=8
这个多边形的边数为8.
三角形如果三条边都相等,三个角也都相等,那么这样的三角形就叫做正三角形.
如果多边形各边都相等,各个角也都相等,那么这样的多边形就叫做正多边形.如正三角形、正四边形(正方形)、正五边形等等.正三角形正方形正五边形正六边形(或正三边形)(或正四边形)活动3:探究正多边形下列图形是不是正多边形?(1)各条边都相等的多边形是正多边形;(2)各个角都相等的多边形是正多边形.由上面的结论判定下列说法正确吗?强调:2.各个角都相等;1.各个边都相等;缺一不可:菱形长方形分割多边形三角形分割点与多边形的位置关系顶点边上内部外部转化思想总结归纳多边形的内角和公式n边形内角和等于(n-2)×180°.
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角.
如图,∠A的外角是∠1.EBCD123
45A
多边形所有外角的和叫做这个多边形的外角和.概念学习如图,在五边形的每个顶点处各取一个外角.问题1:任意一个外角和它相邻的内角有什么关系?问题2:五个外角加上它们分别相邻的五个内角和是多少?EBCD123
45A互补5×180°=900°EBCD123
45A五边形外角和=360°=5个平角-五边形内角和=5×180°-(5-2)×180°结论:五边形的外角和等于360°.问题3:这五个平角和与五边形的内角和、外角和有什么关系?在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和.n边形外角和n边形的外角和等于360°.-(n-2)×180°=360°=n个平角-n边形内角和=n×180°AnA2A3A4123
4nA1思考:n边形的外角和又是多少呢?与边数无关问题4:回想正多边形的性质,你知道正多边形的每个内角是多少度吗?每个外角呢?为什么?每个内角的度数是每个外角的度数是练一练:(1)若一个正多边形的内角是120°,那么这是正____边形.(2)已知多边形的每个外角都是45°,则这个多边形是
______边形.六正八例5
已知一个多边形的每个内角与外角的比都是7:2,求这个多边形的边数.解法一:设这个多边形的内角为7x°,外角为2x°,根据题意得7x+2x=180,解得x=20.即每个内角是140°,每个外角是40°.360°÷40°=9.答:这个多边形是九边形.还有其他解法吗?解法二:设这个多边形的边数为n
,根据题意得解得n=9.答:这个多边形是九边形.【变式题】一个正多边形的一个外角比一个内角大60°,求这个多边形的每个内角的度数及边数.解:设该正多边形的内角是x°,外角是y°,则得到一个方程组解得而任何多边形的外角和是360°,则该正多边形的边数为360÷120=3,故这个多边形的每个内角的度数是60°,边数是三条.例6如图,在正五边形ABCDE中,连接BE,求∠BED的度数.解:由题意得AB=AE,∴∠AEB=(180°-∠A)=36°,∴∠BED=∠AED-∠AEB=108°-36°=72°.正多边形五定义:多边形中,各个角都相等,各条边都相等,这样的多边形叫做正多边形.正三角形正方形正五边形正六边形想一想:下列多边形是正多边形吗?如果不是,请说明为什么?(四条边都相等)(四个角都相等)答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等.
判断一个多边形是不是正多边形,各边都相等,各角都相等,两个条件必须同时具备.注意正多边形边数内角34568n60°90°120°练一练完成下面的表格:108°135°四边形的不稳定性六四边形具有不稳定性:各边的长确定后,图形形状不能确定.课堂小结
在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形.n边形的内角和等于(n-2)·180(n为不小于3的整数)说明:多边形的内角和仅与边数有关,与多边形的大小、形状无关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度医疗机构照明灯具安装服务合同
- 2024公司年会员工发言稿范文(16篇)
- 2024年房地产经纪居间协议
- DB4113T 067-2024 石榴主要病虫害绿色防控技术规程
- 2024乙方甲方电子商务平台咨询合同
- 2024年房屋装修合同法律适用与争议解决协议
- 专题17富强与创新(第01期)-2023年中考道德与法治真题分项汇编(原卷版)
- DB4106T 7-2019 养鸡场兽药使用管理规范
- 2024年农业信息化管理系统与农机设备集成合同
- 创新小班家长会发言稿怎么写(范本12篇)
- 企业风险管理中的政府政策变动管理风险及其应对措施
- 标准齿轮主要参数及其计算课件
- 大学生职业生涯规划书软件技术
- 2022中小学高级教师任职资格评审讲课答辩题目及答案
- 针刺伤标准预防
- 团播主持人协议
- 《急救药品》课件
- 氯酸盐行业分析
- 国开电大 可编程控制器应用实训 形考任务6实训报告
- 社会医学教学设计案例
- GB/T 34120-2023电化学储能系统储能变流器技术要求
评论
0/150
提交评论