版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市锦泽技工学校2024届数学高二上期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列满足,,则数列的通项公式为()A. B.C. D.2.焦点坐标为的抛物线的标准方程是()A. B.C. D.3.直线被圆截得的弦长为()A.1 B.C.2 D.34.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形5.已知双曲线的离心率,点是抛物线上的一动点,到双曲线的上焦点的距离与到直线的距离之和的最小值为,则该双曲线的方程为A. B.C. D.6.已知函数有两个极值点m,n,且,则的最大值为()A. B.C. D.7.在空间直角坐标系下,点关于轴对称的点的坐标为()A. B.C. D.8.按照小李的阅读速度,他看完《三国演义》需要40个小时.2021年12月20日,他开始阅读《三国演义》,当天他读了20分钟,从第二天开始,他每天阅读此书的时间比前一天增加10分钟,则他恰好读完《三国演义》的日期为()A.2022年1月8日 B.2022年1月9日C.2022年1月10日 D.2022年1月11日9.已知函数,,若对于任意的,存在唯一的,使得,则实数a的取值范围是()A(e,4) B.(e,4]C.(e,4) D.(,4]10.如图,已知直线AO垂直于平面,垂足为O,BC在平面内,AB与平面所成角的大小为,,,则异面直线AB与OC所成角的余弦值为()A. B.C. D.11.已知抛物线上的点到该抛物线焦点的距离为,则抛物线的方程是()A. B.C. D.12.若直线的方向向量为,平面的法向量为,则()A. B.C. D.与相交但不垂直二、填空题:本题共4小题,每小题5分,共20分。13.在长方体中,M、N分别是BC、的中点,若,则______14.已知球的表面积是,则该球的体积为________.15.已知抛物线上一横坐标为5的点到焦点的距离为6,且该抛物线的准线与双曲线:的两条渐近线所围成的三角形面积为,则双曲线的离心率为__________.16.以点为圆心,且与直线相切的圆的方程是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,E为BP的中点,,(1)证明:平面PAD;(2)求平面EAC与平面PAC夹角的余弦值18.(12分)如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,,且AD为BC边上的中线,AE为∠BAC的角平分线(1)求及线段BC的长;(2)求△ADE的面积19.(12分)如图,在四棱锥中,平面,四边形是菱形,,,是的中点(1)求证:;(2)已知二面角的余弦值为,求与平面所成角的正弦值20.(12分)已知等比数列的前项和为,且.(1)求数列的通项公式;(2)令,求数列的前项和.21.(12分)已知椭圆的离心率为,长轴长为,F为椭圆的右焦点(1)求椭圆C的方程;(2)经过点的直线与椭圆C交于两点,,且以为直径的圆经过原点,求直线的斜率;(3)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于的直线过定点22.(10分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据等差数列的定义和通项公式直接得出结果.【题目详解】因为,所以数列是等差数列,公差为1,所以.故选:B2、D【解题分析】依次确定选项中各个抛物线的焦点坐标即可.【题目详解】对于A,的焦点坐标为,A错误;对于B,的焦点坐标为,B错误;对于C,焦点坐标为,C错误;对于D,的焦点坐标为,D正确.故选:D.3、C【解题分析】利用直线和圆相交所得的弦长公式直接计算即可.【题目详解】由题意可得圆的圆心为,半径,则圆心到直线的距离,所以由直线和圆相交所得的弦长公式可得弦长为:.故选:C.4、B【解题分析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【题目详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B5、B【解题分析】先根据离心率得,再根据抛物线定义得最小值为(为抛物线焦点),解得,即得结果.【题目详解】因为双曲线的离心率,所以,设为抛物线焦点,则,抛物线准线方程为,因此到双曲线的上焦点的距离与到直线的距离之和等于,因为,所以,即,即双曲线的方程为,选B.【题目点拨】本题考查双曲线方程、离心率以及抛物线定义,考查基本分析求解能力,属中档题.6、C【解题分析】对求导得,得到m,n是两个根,由根与系数的关系可得m,n的关系,然后构造函数,利用导数求单调性,进而得最值.【题目详解】由得:m,n是两个根,由根与系数的关系得:,故,令记,则,故在上单调递减.故选:C7、C【解题分析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【题目详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.8、B【解题分析】由等差数列前n项和列不等式求解即可.【题目详解】由题知,每天的读书时间为等差数列,首项为20,公差为10,记n天读完.则40小时=2400分钟,令,得或(舍去),故,即第21天刚好读完,日期为2022年1月9日.故选:B9、B【解题分析】结合导数和二次函数的性质可求出和的值域,结合已知条件可得,,从而可求出实数a的取值范围.【题目详解】解:g(x)=x2ex的导函数为g′(x)=2xex+x2ex=x(x+2)ex,当时,,由时,,时,,可得g(x)在[–1,0]上单调递减,在(0,1]上单调递增,故g(x)在[–1,1]上的最小值为g(0)=0,最大值为g(1)=e,所以对于任意的,.因为开口向下,对称轴为轴,又,所以当时,,当时,,则函数在[,2]上的值域为[a–4,a],且函数f(x)在,图象关于轴对称,在(,2]上,函数单调递减.由题意,得,,可得a–4≤0<e<,解得ea≤4故选:B【题目点拨】本题考查了利用导数求函数的最值,考查了二次函数的性质,属于中档题.本题的难点是这一条件的转化.10、B【解题分析】建立空间直角坐标系,求出相关点的坐标,求出向量的坐标,再利用向量的夹角公式计算即可.【题目详解】如图,以O为坐标原点,过点O作OB的垂线为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,设,则,,则,,,,,设的夹角为,则,所以异面直线AB与OC所成角的余弦值为,故选:B.11、B【解题分析】由抛物线知识得出准线方程,再由点到焦点的距离等于其到准线的距离求出,从而得出方程.【题目详解】由题意知,则准线为,点到焦点的距离等于其到准线的距离,即,∴,则故选:B.12、B【解题分析】通过判断直线的方向向量与平面的法向量的关系,可得结论【题目详解】因为,,所以,所以∥,因为直线的方向向量为,平面的法向量为,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、-2【解题分析】作出图像,根据几何关系,结合空间向量的加减法运算法则即可求解.【题目详解】,∴,,,故答案为:-2.14、【解题分析】设球的半径为r,代入表面积公式,可解得,代入体积公式,即可得答案.【题目详解】设球的半径为r,则表面积,解得,所以体积,故答案为:【题目点拨】本题考查已知球的表面积求体积,关键是求出半径,再进行求解,考查基础知识掌握程度,属基础题.15、3【解题分析】由题意求得抛物线的准线方程为,进而得到准线与双曲线C的渐近线围成的三角形面积,求得,再结合和离心率的定义,即可求解.【题目详解】由题意,抛物线上一横坐标为5的点到焦点的距离为6,根据抛物线定义,可得,即,所以抛物线的准线方程为,又由双曲线C的两条渐近线方程为,则抛物线的准线与双曲线C的两条渐近线围成的三角形面积为,解得,又由,可得,所以双曲线C离心率.故答案为:3.16、【解题分析】根据直线与圆相切,圆心到直线距离等于半径,由点到直线的距离公式求出半径,然后可得.【题目详解】圆心到直线的距离,又圆与直线相切,所以,所以圆的方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)通过作辅助线,构造平行四边形,在平面PAD找到线并证明,根据线面平行的判定定理即可证明;(2)建立空间直角坐标系,求出相应点的坐标,进而求得相关的向量坐标,求出平面EAC与平面PAC的法向量,根据向量的夹角公式求得答案.【小问1详解】证明:取PA的中点F,由E为PB的中点,则,,而,,所以且,则四边形CDFE为平行四边形,所以,又平面PAD,平面PAD,所以平面PAD【小问2详解】∵平面ABCD,,∴AP,AB,AD两两垂直,以A为原点,,,向量方向分别为x轴,y轴,z轴建立如图所示空间直角坐标系,各点坐标如下:,,,,,设平面APC的法向量为,由,,有,取,则,,即,设平面EAC的法向量为,由,,有,取,则,,即,所以,由原图可知平面EAC与平面PAC夹角为锐角,所以平面EAC与平面PAC夹角的余弦值为18、(1),BC=6(2)【解题分析】(1)利用正弦定理、二倍角公式化简已知条件,求得,结合余弦定理求得,也即.(2)求得三角形的面积,结合角平分线、中线的性质求得三角形的面积.小问1详解】∵,∴,∴,∴由余弦定理得(负值舍去),即BC=6.【小问2详解】∵,,∴,∴,∵AE平分∠BAC,,由正弦定理得:,其中,∴,∵AD为BC边的中线,∴,∴.19、(1)证明见解析;(2).【解题分析】(1)由菱形及线面垂直的性质可得、,再根据线面垂直的判定、性质即可证结论.(2)构建空间直角坐标系,设,结合已知确定相关点坐标,进而求面、面的法向量,结合已知二面角的余弦值求出参数t,再根据空间向量夹角的坐标表示求与平面所成角的正弦值【小问1详解】由平面,平面,则,又是菱形,则,又,所以平面,平面所以E.【小问2详解】分别以,,为,,轴正方向建立空间直角坐标系,设,则,由(1)知:平面的法向量为,令面的法向量为,则,令,可得,因为二面角的余弦值为,则,可得,则,设与平面所成的角为,又,,所以.20、(1)(2)【解题分析】(1)根据得到,再结合为等比数列求出首项,进而求得数列的通项公式;(2)由(1)求得数列的通项公式,进而利用公式法即可求出【小问1详解】解:(1),,当时,,即,又,为等比数列,所以,,数列的通项公式为【小问2详解】(2)由(1)知,则,数列的前项和21、(1);(2);(3).【解题分析】(1)由题意中离心率和长轴长可求出,即可求出椭圆方程.(2)设出与的坐标即直线的方程,把直线与椭圆方程进行联立写出韦达定理,由题意以为直径圆经过原点可得,化简即可求出直线的斜率.(3)由题意可得圆的方程,设,由和直线的方程化简,即可得到答案.【小问1详解】,,椭圆C的方程为.【小问2详解】由题意知直线的斜率存在且不为0,设直线的方程为.设.把直线的方程与椭圆的方程进行联立得:..由以为直径圆经过原点知,..经检验,满足,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年教育信息化:《拿来主义》课件在智能教学中的应用
- 《老王和他的2024》:科技创新应用案例
- 2024国考常识判断真题附参考答案(a卷)
- 2024年教育课件发展:《打瞌睡的房子》新解读
- 2专业AutoCAD教学教案2024版:培养未来工程师的关键技能
- 2024年高考攻略:《理想的翅膀》帮你圆梦
- 衢江区村办企业规范运营管理考核细则
- 2020-2021学年山东省泰安市东平县七年级(上)期中地理试卷(五四学制)(附答案详解)
- 农民工讨薪起诉书范文
- 南京卷(XX身边的文学踪迹)-2022年江苏语文中考真题写作话题解读与范文分享
- 地震灾害应急响应流程
- 11月9日小学生消防安全教育课件
- 灵芝种植项目商业计划书
- 耐久性测试分析
- 武术队管理制度
- 秋冬季常见传染病预防知识培训
- 群众文化活动服务投标方案(技术标)
- 2024建筑门窗安装技术规程
- 降低会阴侧切率的PDCA
- 第二篇创业机会的识别课件
- 2023年江苏省无锡锡山区市场监督管理局招聘11人笔试参考题库(共500题)答案详解版
评论
0/150
提交评论