版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省鄂州市部分高中联考协作体2024年高二数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,则双曲线M的渐近线方程是()A. B.C. D.2.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.3.高中生在假期参加志愿者活动,既能服务社会又能锻炼能力.某同学计划在福利院、社区、图书馆和医院中任选两个单位参加志愿者活动,则参加图书馆活动的概率为()A. B.C. D.4.等差数列中,,,则当取最大值时,的值为A.6 B.7C.6或7 D.不存在5.已知定义在R上的函数满足,且当时,,则下列结论中正确的是()A. B.C. D.6.已知,则()A. B.C. D.7.若向量,,则()A. B.C. D.8.设双曲线的左、右顶点分别为、,点在双曲线上第一象限内的点,若的三个内角分别为、、且,则双曲线的渐近线方程为()A. B.C. D.9.等差数列中,,则()A. B.C. D.10.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则11.已知等比数列的公比为q,且,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.如图是正方体的平面展开图,在这个正方体中①与平行;②与是异面直线;③与成60°角;④与是异面直线以上四个结论中,正确结论的序号是A.①②③ B.②④C.③④ D.②③④二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的顶点为O,焦点为F,动点B在C上,若点B,O,F构成一个斜三角形,则______14.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的列联表中,______.会外语不会外语合计男ab20女6d合计185015.设数列满足,则an=________16.若实数、满足,则的取值范围为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上横坐标为3的点P到焦点F的距离为4.(1)求抛物线E的方程;(2)点A、B为抛物线E上异于原点O的两不同的点,且满足.若直线AB与椭圆恒有公共点,求m的取值范围.18.(12分)如图,已知椭圆:()的左、右焦点分别为、,离心率为.过的直线与椭圆的一个交点为,过垂直于的直线与椭圆的一个交点为,.(1)求椭圆的方程和点的轨迹的方程;(2)若曲线上的动点到直线:的最大距离为,求的值.19.(12分)已知椭圆C:(a>b>0)的离心率e为,点在椭圆上(1)求椭圆C的方程;(2)若A、B为椭圆的左右顶点,过点(1,0)的直线交椭圆于M、N两点,设直线AM、BN的斜率分别为,求证为定值20.(12分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面21.(12分)已知椭圆的离心率为,长轴长为,F为椭圆的右焦点(1)求椭圆C的方程;(2)经过点的直线与椭圆C交于两点,,且以为直径的圆经过原点,求直线的斜率;(3)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于的直线过定点22.(10分)在△中,角A,B,C的对边分别为a,b,c,已知,,.(1)求的大小及△的面积;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由双曲线的方程直接求出见解析即可.【题目详解】由双曲线,则其渐近线方程为:故选:C2、C【解题分析】根据统计的概念逐一判断即可.【题目详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.3、D【解题分析】对4个单位分别编号,利用列举法求出概率作答.【题目详解】记福利院、社区、图书馆和医院分别为A,B,C,D,从4个单位中任选两个的试验有AB,AC,AD,BC,BD,CD,共6个基本事件,它们等可能,其中有参加图书馆活动的事件有AC,BC,CD,共3个基本事件,所以参加图书馆活动的概率.故选:D4、C【解题分析】设等差数列的公差为∵∴∴∴∵∴当取最大值时,的值为或故选C5、B【解题分析】由可得,利用导数判断函数在上的单调性,由此比较函数值的大小确定正确选项.【题目详解】∵∴,当时,,∴,故∴在内单调递增,又,∴,所以故选:B6、B【解题分析】根据基本初等函数的导数公式及求导法则求导函数即可.【题目详解】.故选:B.7、D【解题分析】由向量数量积的坐标运算求得数量积,模,结合向量的共线定义判断【题目详解】由已知,,,与不垂直,若,则,,但是,,因此与不共线故选:D8、B【解题分析】设点,其中,,求得,且有,,利用两角和的正切公式可求得的值,进而可求得的值,即可得出该双曲线的渐近线的方程.【题目详解】易知点、,设点,其中,,且,,且,,,所以,,,因为,所以,,则,因此,该双曲线渐近线方程为.故选:B.9、C【解题分析】由等差数列的前项和公式和性质进行求解.【题目详解】由题意,得.故选:C.10、D【解题分析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【题目详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.11、B【解题分析】利用充分条件和必要条件的定义结合等比数列的性质分析判断【题目详解】当时,则,则数列为递减数列,当是递增数列时,,因为,所以,则可得,所以“”是“是递增数列”的必要不充分条件,故选:B12、C【解题分析】根据平面展开图可得原正方体,根据各点的分布逐项判断可得正确的选项.【题目详解】由平面展开图可得原正方体如图所示:由图可得:为异面直线,与不是异面直线,是异面直线,故①②错误,④正确.连接,则为等边三角形,而,故或其补角为与所成的角,因为,故与所成的角为,故③正确.综上,正确命题的序号为:③④.故选:C.【题目点拨】本题考查正方体的平面展开图,注意展开图中的点与正方体中的顶点的对应关系,本题属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】画出简单示意图,令,根据抛物线定义可得,应用数形结合及B在C上,求目标式的值.【题目详解】如下图,令,直线为抛物线准线,轴,由抛物线定义知:,又且,所以,故,又,故.故答案为:2.【题目点拨】关键点点睛:应用抛物线的定义将转化为,再由三角函数的定义及点在抛物线上求值.14、24【解题分析】根据题意列方程组求解即可【题目详解】由题意得所以,,.故答案为:2415、【解题分析】先由题意得时,,再作差得,验证时也满足【题目详解】①当时,;当时,②①②得,当也成立.即故答案为:16、【解题分析】直接利用换元法以及基本不等式,求出结果【题目详解】解:设,由于,所以,由于,(当且仅当时取等号)所以(当且仅当时取等号),(当且仅当时取等号),故,,所以,整理得:故的取值范围为的取值范围故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由焦半径公式可得,求解即可得答案;(2)由题意,直线AB斜率不为0,设,,联立直线与抛物线的方程,由韦达定理及可得,从而可得直线AB恒过定点,进而可得定点在椭圆内部或椭圆上即可求解.【小问1详解】解:因为抛物线上横坐标为3的点P到焦点F的距离为4,所以,解得,所以抛物线E的方程为;【小问2详解】解:由题意,直线AB斜率不为0,设,,由,可得,所以,因为,即,所以,所以,即,所以,所以直线,所以直线AB恒过定点,因为直线AB与椭圆恒有公共点,所以定点在椭圆内部或椭圆上,即,所以.18、(1)椭圆的方程为,点的轨迹的方程为(2)【解题分析】(1)由题意可得,求出,再结合,求出,从而可得椭圆的方程,设,则由题意可得,坐标代入化简可得点的轨迹的方程,(2)由题意结合点到直线的距离公式可得,设,将直线方程代入椭圆方程中消去,整理利用根与系数的关系,由,可得,因为,代入化简计算可求得答案【小问1详解】由题意得,解得,则,所以椭圆的方程,设,则由题意可得,所以,所以,所以点轨迹的方程为【小问2详解】由(1)知曲线是以原点为圆心,1为半径的圆,因为曲线上的动点到直线:的最大距离为,所以,得,设,由,得,所以,,因为,所以,所以,所以,因为,所以,所以,,所以,得,得(舍去),或19、(1);(2)证明见解析【解题分析】(1)根据题意列出关于a、b、c的方程组求出a、b、c即可得椭圆方程;(2)设直线的方程为,,,,,联立直线方程利用韦达定理即可求为定值【小问1详解】;【小问2详解】由椭圆方程可知,,,设直线的方程为,,,,,联立得,∴,,则,∵,,∴,把及代入可得:﹒20、(1)证明见解析(2)证明见解析【解题分析】(1)根据直棱柱的性质、平行四边形的性质,结合三角形中位线定理、线面平行的判定定理进行证明即可;(2)根据直棱柱的性质、菱形的判定定理和性质,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可.【小问1详解】在直三棱柱中,,且四边形平行四边形,又,则为的中点,又为的中点,故,即:,且平面,平面,所以平面;【小问2详解】在直三棱柱中,平面,平面,则,且,,平面,故平面,因为平面,所以,又在平行四边形中,,则四边形菱形,所以,且,平面,故平面,因为平面,所以平面平面.21、(1);(2);(3).【解题分析】(1)由题意中离心率和长轴长可求出,即可求出椭圆方程.(2)设出与的坐标即直线的方程,把直线与椭圆方程进行联立写出韦达定理,由题意以为直径圆经过原点可得,化简即可求出直线的斜率.(3)由题意可得圆的方程,设,由和直线的方程化简,即可得到答案.【小问1详解】,,椭圆C的方程为.【小问2详解】由题意知直线的斜率存在且不为0,设直线的方程为.设.把直线的方程与椭圆的方程进行联立得:..由以为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度医疗健康产业股权众筹委托投资合同
- 2025家具代理的销售合同书
- 2025青岛市整体厨房承揽合同
- 代替府起草回复函
- 《有效的管理者》读书分享
- 2025修路合同书范本范文
- 2025农村房屋室内装修合同书模板
- 2025建设工程分包合同范本
- 2025采购合同范本借鉴
- 美术行业创作技巧培训总结
- 员工职业素养与团队意识培训课件2
- 部编版三年级下册语文全册教案及全套导学案
- 2024年国家级森林公园资源承包经营合同范本3篇
- 对口升学《计算机应用基础》复习资料总汇(含答案)
- 《浸没式液冷冷却液选型要求》
- 迪士尼乐园总体规划
- 2024年江苏省苏州市中考数学试卷含答案
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 介绍蝴蝶兰课件
- 大学计算机基础(第2版) 课件 第1章 计算机概述
- 数字化年终述职报告
评论
0/150
提交评论