版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年湖南省岳阳市岳阳县高二上数学期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过,两点的直线的一个方向向量为,则()A.2 B.2C.1 D.12.已知数列是各项均为正数的等比数列,若,则公比()A. B.2C.2或 D.43.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A. B.2C. D.4.已知,为双曲线:的焦点,为,(其中为双曲线半焦距),与双曲线的交点,且有,则该双曲线的离心率为()A. B.C. D.5.在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.不能确定6.命题“对任何实数,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得7.抛物线的焦点坐标为()A. B.C. D.8.已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)9.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.11.下列命题中,结论为真命题的组合是()①“”是“直线与直线相互垂直”的充分而不必要条件②若命题“”为假命题,则命题一定是假命题③是的必要不充分条件④双曲线被点平分的弦所在的直线方程为⑤已知过点的直线与圆的交点个数有2个.A.①③④ B.②③④C.①③⑤ D.①②⑤12.已知双曲线的右焦点为F,双曲线C的右支上有一点P满是(点O为坐标原点),那么双曲线C的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线C:(a>0,b>0)的一条渐近线为y=x,则C的离心率为_________14.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________15.已知平面的一个法向量为,点为内一点,则点到平面的距离为___________.16.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中为常数,且(1)求证:时,;(2)已知a,b,p,q为正实数,满足,比较与的大小关系.18.(12分)如图所示,在长方体ABCD-A1B1C1D1中,E,F分别是AB,A1C的中点,AD=AA1=2,AB=(1)求证:EF∥平面ADD1A1;(2)求平面EFD与平面DEC的夹角的余弦值;(3)在线段A1D1上是否存在点M,使得BM⊥平面EFD?若存在,求出的值;若不存在,请说明理由19.(12分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.20.(12分)已知函数(1)求函数的单调区间;(2)求函数在区间上的值域21.(12分)已知数列是递增的等差数列,,若成等比数列.(1)求数列的通项公式;(2)若,数列的前项和,求.22.(10分)已知等差数列的前项和为,满足,.(1)求数列的通项公式与前项和;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】应用向量的坐标表示求的坐标,由且列方程求y值.【题目详解】由题设,,则且,所以,即,可得.故选:C2、B【解题分析】由两式相除即可求公比.【题目详解】设等比数列的公比为q,∵其各项均为正数,故q>0,∵,∴,又∵,∴=4,则q=2.故选:B.3、A【解题分析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【题目详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.4、B【解题分析】根据求得的关系,结合双曲线的定义以及勾股定理,即可求得的等量关系,再求离心率即可.【题目详解】根据题意,连接,作图如下:显然为直角三角形,又,又点在双曲线上,故可得,解得,由勾股定理可得:,即,即,,故双曲线的离心率为.故选:B.5、B【解题分析】建立空间直角坐标系,求得平面BB1C1C的法向量和直线MN的方向向量,利用两向量垂直,得到线面平行.【题目详解】建立如图所示的空间直角坐标系,由图可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故选:B.【题目点拨】该题考查的是有关立体几何的问题,涉及到的知识点有利于空间向量判断线面平行,属于简单题目.6、B【解题分析】可将原命题变成全称命题形式,而全称命题的否定为特称命题,即可选出答案.【题目详解】命题“对任何实数,都有”,可写成:,使得,此命题为全称命题,故其否定形式为:,使得.故选:B.7、C【解题分析】先把抛物线方程化为标准方程,求出即可求解【题目详解】由,有,可得,抛物线的焦点坐标为故选:C8、D【解题分析】通过构造函数法,结合导数确定正确答案.【题目详解】构造函数,所以在上递增,所以,即.故选:D9、B【解题分析】因但10、B【解题分析】由空间向量的线性运算求解【题目详解】由题意,又,,,∴,故选:B11、C【解题分析】求出两直线垂直时m值判断①;由复合命题真值表可判断②;化简不等式结合充分条件、必要条件定义判断③;联立直线与双曲线的方程组成的方程组验证判断④;判定点与圆的位置关系判断⑤作答.【题目详解】若直线与直线相互垂直,则,解得或,则“”是“直线与直线相互垂直”的充分而不必要条件,①正确;命题“”为假命题,则与至少一个是假命题,不能推出一定是假命题,②不正确;,,则是的必要不充分条件,③正确;由消去y并整理得:,,即直线与双曲线没有公共点,④不正确;点在圆上,则直线与圆至少有一个公共点,而过点与圆相切的直线为,直线不包含,因此,直线与圆相交,有两个交点,⑤正确,所以所有真命题的序号是①③⑤.故选:C12、D【解题分析】分析焦点三角形即可【题目详解】如图,设左焦点为,因为,所以不妨设,则离心率故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据已知可得,结合双曲线中的关系,即可求解.【题目详解】由双曲线方程可得其焦点在轴上,因为其一条渐近线为,所以,.故答案为:【题目点拨】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.14、相交【解题分析】由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为,两圆的半径之差为1,半径之和为5,而1<<5,所以两圆的位置关系为相交15、1【解题分析】利用空间向量求点到平面的距离即可.【题目详解】,,∴则点P到平面的距离为.故答案为:1.16、【解题分析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)根据导数判断出函数的单调性求出其最大值,即可证出;(2)由(1)知:,再变形即可得出小问1详解】因为,∴在上单调递减,又因,故当时,;当时,,所以在上单调递增,在上单调递减,所以.【小问2详解】由(1)知:,两边同乘以a得:,∴,即.18、(1)证明见解析;(2);(3)不存在;理由见解析【解题分析】(1)连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO,根据判定定理证明四边形AEFO是平行四边形,进而得到线面平行;(2)建立坐标系,求出两个面的法向量,求得两个法向量的夹角的余弦值,进而得到二面角的夹角的余弦值;(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD,设出点M的坐标,由第二问得到平面EFD的一个法向量,判断出和该法向量不平行,故不存在满足题意的点M.【题目详解】(1)证明:连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO因为F是A1C的中点,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四边形AEFO是平行四边形所以EF∥AO因为EF⊄平面ADD1A1,AO⊂平面ADD1A1,所以EF∥平面ADD1A1(2)以点A为坐标原点,直线AB,AD,AA1分别为x轴,y轴,z轴建立空间直角坐标系,因为点E,F分别是AB,A1C的中点,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F所以=,=(0,1,1)设平面EFD的法向量为,则即令y=1,则z=-1,x=2所以,由题知,平面DEC的一个法向量为m=(0,0,1),所以cos<,>==所以平面EFD与平面DEC的夹角的余弦值是(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD设点M的坐标为(0,t,2)(0≤t≤2),则=(,t,2)因为平面EFD的一个法向量为,而与不平行,所以在线段A1D1上不存在点M,使得BM⊥平面EFD19、(1),600(2)【解题分析】用平均数及方差公式计算即可.用平均值得、之间的关系,再由,解不等式可得解.【小问1详解】甲类品牌汽车的排放量的平均值,甲类品牌汽车的排放量的方差.【小问2详解】由题意知乙类品牌汽车的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的排放量的方差,因为乙类品牌汽车比甲类品牌汽车的排放量稳定性好,所以,解得.20、(1)单调递增区间为,单调递减区间为;(2)【解题分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出函数的极值点,从而求出函数的最值即可【题目详解】解:(1)由题意得,,令,得,令,得或,故函数的单调递增区间为,单调递减区间为(2)易知,因为,所以(或由,可得),又当时,,所以函数在区间上的值域为【题目点拨】确定函数单调区间的步骤:第一步,确定函数的定义域;第二步,求;第三步,解不等式,解集在定义域内的部分为单调递增区间;解不等式,解集在定义域内的部分为单调递减区间21、(1);(2).【解题分析】(1)设等差数列的公差为,根据题意列出方程组,求得的值,即可求解;(2)由(1)求得,结合“裂项法”即可求解.【题目详解】(1)设等差数列的公差为,因为,若成等比数列,可得,解得,所以数列的通项公式为.(2)由(1)可得,所以.【题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度四人物联网四人合伙人协议3篇
- 二零二五年度农村集体土地经营权流转合同
- 二零二五年度农业现代化合作成立公司协议书3篇
- 二零二五年度家具设计与制造服务合同样本3篇
- 2025年度温室蔬菜大棚转让与配套设备购置合同
- 2025年度农村土地征收补偿安置与农业可持续发展协议
- 二零二五年度广告素材版权购买合同3篇
- 2025年农村宅基地使用权转让及农村土地承包经营权抵押贷款服务协议
- 2025年度股东借款及市场拓展合同3篇
- 2025年度农业种植与农业产业升级合作协议3篇
- 2024年03月山东烟台银行招考笔试历年参考题库附带答案详解
- 安徽省合肥市蜀山区2024-2025学年七年级上学期地理期末模拟练习(含答案)
- 新建设项目施工人员安全教育培训课件
- 江苏省扬州市2024-2025学年高中学业水平合格性模拟考试英语试题(含答案)
- 品质总监转正述职报告
- 2024年游艇俱乐部会员专属活动策划与执行合同3篇
- 《项目管理培训课程》课件
- 2024年企业团购:销售合作协议3篇
- 2024-2025学年八年级语文上学期期末真题复习 专题06 文言文阅读
- 制药课程设计三废处理
- 期末测试卷(试题)-2024-2025学年北师大版数学五年级上册
评论
0/150
提交评论