广东省河源市黄石中学2021年高二数学文期末试题含解析_第1页
广东省河源市黄石中学2021年高二数学文期末试题含解析_第2页
广东省河源市黄石中学2021年高二数学文期末试题含解析_第3页
广东省河源市黄石中学2021年高二数学文期末试题含解析_第4页
广东省河源市黄石中学2021年高二数学文期末试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省河源市黄石中学2021年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.抛物线的准线与双曲线的两条渐近线所围成的三角形的面积等于(

)A.

B.

C.

D.参考答案:A略2.在△ABC中,根据下列条件解三角形,则其中有两个解的是A.

B.C.

D.参考答案:D3.对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即<k+1,则当n=k+1时,=<==(k+1)+1,∴当n=k+1时,不等式成立.则上述证法()A.过程全部正确 B.n=1验得不正确C.归纳假设不正确 D.从n=k到n=k+1的推理不正确参考答案:D【考点】数学归纳法.【分析】此证明中,从推出P(k+1)成立中,并没有用到假设P(k)成立的形式,不是数学归纳法.【解答】解:在n=k+1时,没有应用n=k时的假设,即从n=k到n=k+1的推理不正确.故选D.4.函数的图像与函数()的图像的交点为,则 ( )

A.2 B.4 C.6 D.8参考答案:D:试题分析:的图象由奇函数的图象向右平移一个单位得到,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得的图象的一个对称中心也是点(1,0),故交点的个数为偶数,且每一对对称点的横坐标之和为2,由此画图可得出正确答案,故选D考点:三角函数的周期性及其性质5.已知,则(

)A.

B.

C.

D.参考答案:B6.下列选项错误的是(

)A.命题“若,则”的逆否命题是“若,则”B.“”是“”的充分不必要条件;C.若命题p:,,则:,;D.在命题的四种形式中,若原命题为真命题,则否命题为假命题参考答案:D对于A,命题“若,则”的逆否命题是“若,则”,正确;对于B,由解得:或,∴“”是“”的充分不必要条件,正确;对于C,若命题:,,则:,,正确;对于D,在命题的四种形式中,原命题与逆否命题同真同假,逆命题与否命题同真同假,原命题与否命题关系不定,故错误;故选:D

7.等差数列{an},,,则此数列20和等于(

).A160 B.180 C.200 D.220参考答案:B∵,,∴,∴,∴.故选.8.过双曲线(a>0,b>0)的右焦点F,作渐近线y=x的垂线与双曲线左右两支都相交,则双曲线离心率e的取值范围为(

)A.(1,2)

B.(1,)

C.(,+∞)

D.(2,+∞)参考答案:C9.椭圆的两个焦点是,为椭圆上与不共线的任意一点,为的内心,延长交线段于点,则等于(

)A. B. C. D.参考答案:A略10.一个等比数列的第3项和第4项分别是12和18,则它的第2项为(

)A.4 B.8 C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=10,P为C的准线上一点,则△ABP的面积为.参考答案:25【考点】抛物线的简单性质.【分析】根据抛物线的解析式y2=2px(p>0),写出抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:由于抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣,∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=10∴p=5又∵点P在准线上∴DP=+|﹣|=p=5∴S△ABP=DP?AB=×5×10=25故答案为25.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.12.如果的展开式中各项系数之和为128,则开式中的系数是(

)A.

B.

C.

D.

参考答案:C略13.已知矩形ABCD的周长为18,把它沿图中的虚线折成正四棱柱,则这个正四棱柱的外接球表面积的最小值为

.参考答案:36π【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】正四棱柱的底面边长为x,高为y,则4x+y=18,0<x<4.5,求出正四棱柱的外接球的半径的最小值,即可求出外接球的表面积的最小值.【解答】解:设正四棱柱的底面边长为x,高为y,则4x+y=18,0<x<4.5,正四棱柱的外接球半径为=,当且仅当x=4时,半径的最小值=3,∴外接球的表面积的最小值为4π×9=36π.故答案为36π.14.对于函数,使成立的所有常数中,我们把的最小值叫做函数的上确界,则函数的上确界是

。参考答案:515.已知,,若向区域上随机投掷一点,则点落入区域的概率为

参考答案:略16.已知、、、都是正数,,则S的取值范围是_____________.参考答案:1<<2略17.已知x>0,y>0,且,则x+2y的最小值为______________.参考答案:8三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设各项为正数的等比数列的首项,前n项和为,且。(1)求的通项;(2)求的前n项和。参考答案:(1)由得即可得

前两式相减,得

略19.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.参考答案:【考点】直线与平面平行的判定;直线与平面所成的角.【分析】(Ⅰ)先取AA1的中点M,连接EM,BM,根据中位线定理可知EM∥AD,而AD⊥平面ABB1A1,则EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,则∠EBM直线BE与平面ABB1A1所成的角,设正方体的棱长为2,则EM=AD=2,BE=3,于是在Rt△BEM中,求出此角的正弦值即可.(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,根据中位线定理可知EG∥A1B,从而说明A1,B,G,E共面,则BG?面A1BE,根据FG∥C1C∥B1G,且FG=C1C=B1B,从而得到四边形B1BGF为平行四边形,则B1F∥BG,而B1F?平面A1BE,BG?平面A1BE,根据线面平行的判定定理可知B1F∥平面A1BE.【解答】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,∠EBM直线BE与平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE=,于是在Rt△BEM中,即直线BE与平面ABB1A1所成的角的正弦值为.(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E共面,所以BG?平面A1BE因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F?平面A1BE,BG?平面A1BE,故B1F∥平面A1BE.20.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a?cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.参考答案:【考点】正弦定理;余弦定理.【专题】解三角形.【分析】(1)由bsinA=a?cosB,由正弦定理可得:sinBsinA=sinAcosB,化简整理即可得出.(2)由sinC=2sinA,可得c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,代入计算即可得出.【解答】解:(1)∵bsinA=a?cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.【点评】本题考查了正弦定理余弦定理、三角形内角和定理与三角函数的单调性,考查了推理能力与计算能力,属于中档题.21.(理)(本小题满分12分)解关于x的不等式ax2-(a+1)x+1<0.参考答案:(理)解:当a=0时,不等式的解为x>1;

-------------2分当a≠0时,分解因式a(x-)(x-1)<0-------------4分

当a<0时,原不等式等价于(x-)(x-1)>0,不等式的解为x>1或x<;--6分

当0<a<1时,1<,不等式的解为1<x<;-------------8分

当a>1时,<1,不等式的解为<x<1;-------------10分

当a=1时,不等式的解为.-------------12分22.已知的顶点A(0,1),AB边上的中线CD所在直线方程为,AC边上的高BH所在直线方程为.(1)求的项点B、C的坐标(2)若圆M经过不同的三点A、B、P(m、0),且斜率为1的直线与圆M相切于点P求:圆M的方程参考答案:(1)AC边上的高BH所在直线方程为y=0,所以AC:x=0又CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论