2024学年河北省巨鹿县二中高二数学第一学期期末监测模拟试题含解析_第1页
2024学年河北省巨鹿县二中高二数学第一学期期末监测模拟试题含解析_第2页
2024学年河北省巨鹿县二中高二数学第一学期期末监测模拟试题含解析_第3页
2024学年河北省巨鹿县二中高二数学第一学期期末监测模拟试题含解析_第4页
2024学年河北省巨鹿县二中高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年河北省巨鹿县二中高二数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.62.已知、是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为9,则的值为()A.1 B.2C.3 D.43.已知函数,则()A. B.C. D.4.已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)5.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27186.设,,,则,,大小关系是A. B.C. D.7.已知等比数列的前n项和为,,,则()A. B.C. D.8.设是区间上的连续函数,且在内可导,则下列结论中正确的是()A.的极值点一定是最值点B.的最值点一定是极值点C.在区间上可能没有极值点D.在区间上可能没有最值点9.已知抛物线的方程为,则此抛物线的准线方程为()A. B.C. D.10.曲线与曲线的A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等11.若是真命题,是假命题,则A.是真命题 B.是假命题C.是真命题 D.是真命题12.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.65二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_____________.14.牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法.具体步骤如下:设r是函数y=f(x)的一个零点,任意选取x0作为r的初始近似值,作曲线y=f(x)在点(x0,f(x0))处的切线l1,设l1与x轴交点的横坐标为x1,并称x1为r的1次近似值;作曲线y=f(x)在点(x1,f(x1))处的切线l2,设l2与x轴交点的横坐标为x2,并称x2为r的2次近似值.一般的,作曲线y=f(x)在点(xn,f(xn))(n∈N)处的切线ln+1,记ln+1与x轴交点的横坐标为xn+1,并称xn+1为r的n+1次近似值.设f(x)=x3+x-1的零点为r,取x0=0,则r的2次近似值为________15.已知过椭圆上的动点作圆(为圆心):的两条切线,切点分别为,若的最小值为,则椭圆的离心率为______16.若椭圆的长轴是短轴的2倍,且经过点,则椭圆的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆与轴相切,圆心在直线上,且到直线的距离为(1)求圆的方程;(2)若圆的圆心在第一象限,过点的直线与相交于、两点,且,求直线的方程18.(12分)已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e.(1)若e=,求椭圆的方程;(2)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,且<e≤,求k的取值范围.19.(12分)已知函数(1)判断的零点个数;(2)若对任意恒成立,求的取值范围20.(12分)如图,在四棱锥中,底面满足,,底面,且,.(1)证明平面;(2)求平面与平面的夹角.21.(12分)设等差数列的各项均为整数,且满足对任意正整数,总存在正整数,使得,则称这样的数列具有性质(1)若数列的通项公式为,数列是否具有性质?并说明理由;(2)若,求出具有性质的数列公差的所有可能值;(3)对于给定的,具有性质的数列是有限个,还是可以无穷多个?(直接写出结论)22.(10分)已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2的周长为6,离心率等于.(1)求椭圆C的标准方程;(2)过点(4,0)的直线l交椭圆C于M、N两点,且OM⊥ON,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】利用椭圆的定义直接求解【题目详解】由题意得,得,因为,,所以,故选:C2、C【解题分析】根据椭圆定义,和条件列式,再通过变形计算求解.【题目详解】由条件可知,,即,解得:.故选:C【题目点拨】本题考查椭圆的定义,焦点三角形的性质,重点考查转化与变形,计算能力,属于基础题型.3、B【解题分析】求出,代值计算可得的值.【题目详解】因为,则,故.故选:B.4、D【解题分析】通过构造函数法,结合导数确定正确答案.【题目详解】构造函数,所以在上递增,所以,即.故选:D5、C【解题分析】根据正态分布的对称性可求概率.【题目详解】由题设可得,,故选:C.6、A【解题分析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【题目详解】考查函数,则,在上单调递增,,(3),即,,故选:【题目点拨】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题7、A【解题分析】由,可得等比数列公比q=2,利用等比数列求和公式和通项公式即可求.【题目详解】设等比数列的公比为q,则,.故选:A.8、C【解题分析】根据连续函数的极值和最值的关系即可判断【题目详解】根据函数的极值与最值的概念知,的极值点不一定是最值点,的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A,B,D都不正确,若函数在区间上单调,则函数在区间上没有极值点,所以C正确故选:C.【题目点拨】本题主要考查函数的极值与最值的概念辨析,属于容易题9、A【解题分析】由抛物线的方程直接写出其准线方程即可.【题目详解】由抛物线的方程为,则其准线方程为:故选:A10、D【解题分析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断【题目详解】解:曲线表示焦点在轴上,长轴长10,短轴长为6,离心率为,焦距为8曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为8对照选项,则正确故选:【题目点拨】本题考查椭圆的方程和性质,考查运算能力,属于基础题11、D【解题分析】因为是真命题,是假命题,所以是假命题,选项A错误,是真命题,选项B错误,是假命题,选项C错误,是真命题,选项D正确,故选D.考点:真值表的应用.12、D【解题分析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【题目详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】求导,求出切线斜率,进而写出切线方程.【题目详解】,则,故切斜方程为:,即故答案为:14、##【解题分析】利用导数的几何意义根据r的2次近似值的定义求解即可【题目详解】由,得,取,,所以过点作曲线的切线的斜率为1,所以直线的方程为,其与轴交点的横坐标为1,即,因为,所以过点作曲线的切线的斜率为4,所以直线的方程为,其与轴交点的横坐标为,即,故答案为:15、【解题分析】由椭圆方程和圆的方程可确定椭圆焦点、圆心和半径;当最小时,可知,此时;根据椭圆性质知,解方程可求得,进而得到离心率.【题目详解】由椭圆方程知其右焦点为;由圆的方程知:圆心为,半径为;当最小时,则最小,即,此时最小;此时,;为椭圆右顶点时,,解得:,椭圆的离心率.故答案为:.16、【解题分析】分类讨论焦点在轴与焦点在轴两种情况.【题目详解】因为椭圆经过点,当焦点在轴时,可知,,所以,所以,当焦点在轴时,同理可得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)或【解题分析】(1)设圆心的坐标为,则该圆的半径长为,利用点到直线的距离公式可求得的值,即可得出圆的标准方程;(2)利用勾股定理可求得圆心到的距离,分析可知直线的斜率存在,设直线的方程为,利用点到直线的距离公式可求得关于的方程,解出的值,即可得出直线的方程.【小问1详解】解:设圆心的坐标为,则该圆的半径长为,因为圆心到直线的距离为,解得,所以圆心的坐标为或,半径为,因此,圆的标准方程为或.【小问2详解】解:若圆的圆心在第一象限,则圆的标准方程为.因为,所以圆心到直线的距离.若直线的斜率不存在,则直线的方程为,此时圆心到直线的距离为,不合乎题意;所以,直线的斜率存在,可设直线的方程为,即,由题意可得,解得,所以,直线的方程为或,即或.18、(1);(2)【解题分析】(1)根据右焦点为F2(3,0),以及,求得a,b,c即可.(2)联立,根据M,N分别为线段AF2,BF2中点,且坐标原点O在以MN为直径的圆上,易得OM⊥ON,则四边形OMF2N为矩形,从而AF2⊥BF2,然后由0,结合韦达定理求解.【题目详解】(1)由题意得c=3,,所以.又因为a2=b2+c2,所以b2=3.所以椭圆的方程为.(2)由,得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依题意易知,OM⊥ON,四边形OMF2N为矩形,所以AF2⊥BF2.因为(x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,将其整理为k2==-1-.因为<e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【题目点拨】关键点点睛:本题第二问的关键是由O在以MN为直径的圆上,即OM⊥ON,得到四边形OMF2N为矩形,推出AF2⊥BF2,结合韦达定理得出斜率k与离心率e的关系.19、(1)个;(2).【解题分析】(1)求,利用导数判断的单调性,结合单调性以及零点存在性定理即可求解;(2)由题意可得对任意恒成立,令,则,利用导数求的最小值即可求解.【小问1详解】的定义域为,由可得,当时,;当时,;所以在上单调递减,在上单调递增,当时,,,此时在上无零点,当时,,,,且在上单调递增,由零点存在定理可得在区间上存在个零点,综上所述有个零点.【小问2详解】由题意可得:对任意恒成立,即对任意恒成立,令,则,由可得:,当时,;当时,,所以在上单调递减,在上单调递增,所以,所以,所以的取值范围.20、(1)证明见解析(2)【解题分析】(1)由已知结合线面平行判定定理可得;(2)建立空间直角坐标系,由向量法可解.【小问1详解】∵,,∴,又平面,平面,∴平面;【小问2详解】∵平面且、平面,∴,,又∵,故分别以所在直线为轴,轴、轴,建立如图空间直角坐标系,如图所示:由,,可得:,,,,,由已知平面,平面,,,,,平面,所以平面,为平面的一个法向量,且;设为平面的一个法向量,则,,,,,,,令,则,,,设平面与平面的夹角大小为,,由得:平面与平面的夹角大小为21、(1)数列具有性质,理由见解析;(2),;(3)有限个.【解题分析】(1)由题意,由性质定义,即可知是否具有性质.(2)由题设,存在,结合已知得且,则,由性质的定义只需保证为整数即可确定公差的所有可能值;(3)根据(2)的思路,可得且,由为整数,在为定值只需为整数,即可判断数列的个数是否有限.【小问1详解】由,对任意正整数,,说明仍为数列中的项,∴数列具有性质.【小问2详解】设的公差为.由条件知:,则,即,∴必有且,则,而此时对任意正整数,,又必一奇一偶,即为非负整数因此,只要为整数且,那么为中的一项.易知:可取,对应得到个满足条件的等差数列.【小问3详解】同(2)知:,则,∴必有且,则,故任意给定,公差均为有限个,∴具有性质的数列是有限个.【题目点拨】关键点点睛:根据性质的定义,在第2、3问中判断满足等差数列通项公式,结合各项均为整数,判断公差的个数是否有限即可.22、(1);(2)或.【解题分析】(1)由条件得,再结合,可求得椭圆方程;(2)由题意设直线l:x=my+4,设M(x1,y1),N(x2,y2),直线方程与椭圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论