版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省达州市沙坝中学2021-2022学年高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量,,,若为实数,,则(
)A.
B.
C.
D.
参考答案:D2.正方体ABCD﹣A′B′C′D′中,AB的中点为M,DD′的中点为N,则异面直线B′M与CN所成角的大小为()A.0° B.45° C.60° D.90°参考答案:D【分析】利用异面直线所成的角的定义,取A′A的中点为E,则直线B′M与CN所成角就是直线B′M与BE成的角.【解答】解:取A′A的中点为E,连接BE,则直线B′M与CN所成角就是直线B′M与BE成的角,由题意得B′M⊥BE,故异面直线B′M与CN所成角的大小为90°,故选D.3.已知全集,集合,,则集合=(
)A.
B.
C.
D.参考答案:A略4.函数的图象向右平移个单位后得到的函数是奇函数,则函数的图象(
)A.关于点对称
B.关于直线对称
C.关于点对称
D.关于直线对称参考答案:D5.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为()A.na(1﹣b%) B.a(1﹣nb%) C.a(1﹣b%)n D.a[1﹣(b%)n]参考答案:C【考点】88:等比数列的通项公式.【分析】根据题意可知第一年后,第二年后以及以后的每年的价值成等比数列,进而根据等比数列的通项公式求得答案.【解答】解:依题意可知第一年后的价值为a(1﹣b%),第二年价值为a(1﹣b%)2,依此类推可知每年的价值成等比数列,其首项a(1﹣b%)公比为1﹣b%,进而可知n年后这批设备的价值为a(1﹣b%)n故选C6.设函数f(x)在(﹣∞,+∞)上有意义,对于给定的正数k,定义函数fk(x)=,取k=3,f(x)=()|x|,则fk(x)=的零点有()A.0个 B.1个C.2个 D.不确定,随k的变化而变化参考答案:C【考点】根的存在性及根的个数判断.【分析】先根据题中所给函数定义,求出函数函数fK(x)的解析式,从而得到一个分段函数,然后再利用指数函数的性质求出所求即可.【解答】解:函数fk(x)=的图象如图所示:则fk(x)=的零点就是fk(x)与y=的交点,故交点有两个,即零点两个.故选:C7.下列函数中,既是偶函数,又在上为增函数的是A.
B. C.
D.参考答案:D8.函数y=的定义域是(﹣∞,1)∪[2,5),则其值域是()A.(﹣∞,0)∪(,2] B.(﹣∞,2] C.(﹣∞,)∪[2,+∞) D.(0,+∞)参考答案:A【考点】函数的值域.【分析】先利用x∈(﹣∞,1)∪[2,5),求出x﹣1的取值范围,再取倒数即可求出函数y=的值域.【解答】解:∵x∈(﹣∞,1)∪[2,5),则x﹣1∈(﹣∞,0)∪[1,4).∴∈(﹣∞,0)∪(,2].故函数y=的值域为(﹣∞,0)∪(,2]故选A.9.已知直线l1;2x+y﹣2=0,l2:ax+4y+1=0,若l1⊥l2,则a的值为()A.8 B.2 C.﹣ D.﹣2参考答案:D【考点】直线的一般式方程与直线的垂直关系.【分析】由直线方程分别求出l1、l2的斜率,再由l1⊥l2得斜率之积为﹣1,列出方程并求出a的值.【解答】解:由题意得,l1:2x+y﹣2=0,l2:ax+4y+1=0,则直线l1的斜率是﹣2,l2的斜率是﹣,∵l1⊥l2,∴(﹣)×(﹣2)=﹣1,解得a=﹣2,故选:D.10.已知tanx=﹣,则sin2x+3sinxcosx﹣1的值为()A.﹣ B.2 C.﹣2或2 D.﹣2参考答案:D【考点】三角函数的化简求值;同角三角函数间的基本关系.【专题】三角函数的求值.【分析】化tanx=﹣为=,得出,cosx=﹣2sinx.由sin2x+cos2x=1,求得sin2x=,将原式化为关于sin2x的三角式求解.【解答】解:tanx=﹣,即=,cosx=﹣2sinx.由sin2x+cos2x=1,得5sin2x=1,sin2x=所以原式=sin2x﹣6sin2x﹣1=5sin2x﹣1=﹣1﹣1=﹣2故选D【点评】本题考查同角三角函数基本关系式的应用,考查公式应用能力,运算求解能力.二、填空题:本大题共7小题,每小题4分,共28分11.读下面程序,该程序所表示的函数是
参考答案:12.在直角坐标系中,分别是与x轴,y轴平行的单位向量,若直角三角形ABC中,,则实数m=________________.1参考答案:-2或0略13.(3分)若函数f(x)=min{2x,x+2,10﹣x}(x≥0),则f(x)的最大值是
.参考答案:6考点:函数的最值及其几何意义.专题:数形结合;函数的性质及应用.分析:画出3个函数:y=2x,y=x+2,y=10﹣x的图象,取3个图象中下方的部分,可得函数f(x)=min{2x,x+2,10﹣x}的图象,观察最大值的位置,通过求函数值,解出最大值.解答:∵min{a,b,c}表示a,b,c三个数中的最小值,∴画出3个函数:y=2x,y=x+2,y=10﹣x的图象,取3个图象中下方的部分,可得函数f(x)=min{2x,x+2,10﹣x}的图象:观察图象可知,当0≤x≤2时,f(x)=2x,当2≤x≤4时,f(x)=x+2,当x>4时,f(x)=10﹣x,f(x)的最大值在x=4时取得为6,故答案为:6.点评:本题考查了函数最值问题,利用数形结合可以很容易的得到最大值.14.已知x>0,由不等式≥2·=2,=≥=3,…,启发我们可以得出推广结论:≥n+1(n∈N*),则a=_______________.参考答案:15.
参考答案:4。解析:由数表推得,每一行都是等差数列,第n行的公差为,记第n行的第m个数为,则算得答案为4。
16.当时,函数
的值域是______________.参考答案:17.已知,则
▲
.参考答案:0三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)设集合至多有个一元素,求实数的取值范围.参考答案:19.(本小题满分10分)已知函数的定义域为集合A,函数的值域为集合B,且A∪B=B,求实数m的取值范围.
参考答案:解:由题意得A={x|1<x≤2},B=(-1,-1+3m].由A∪B=B,得A?B,即-1+3m≥2,即3m≥3,所以m≥1.
.………10分
20.已知函数是定义在上的奇函数.(1)求实数的值,并求函数的值域;(2)判断函数的单调性(不需要说明理由),并解关于的不等式.参考答案:(1);(2)单调递增,.试题分析:(1)借助题设条件运用奇函数的性质求解;(2)借助题设运用函数的单调性探求.试题解析:(1)由题意易知,故.所以,∵,∴,∴,∴,∴,故函数的值域为.(2)由(1)知,易知在上单调递增,且,故,∴,所以不等式的解集为.考点:奇函数的性质及函数的单调性等有关知识的综合运用.21.在AABC中,3sinA+4cosB=6,3cosA+4sinB=1,则角C的大小.参考答案:略22.(本小题满分15分)已知,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版装修工程合同范本:合同生效与解除条件2篇
- 2024跨区域电网工程建设与运营管理合同
- 二零二五版家居行业导购员聘用与考核合同3篇
- 二零二五年餐饮行业食堂承包合作协议范本3篇
- 二零二五版家庭住家保姆综合能力培训聘用合同3篇
- 2025年度新能源出租车特许经营合同3篇
- 二零二五年度跨境电商进口商品代理销售合同9篇
- 二零二五年股权质押贷款担保合同3篇
- 二零二五按揭房离婚财产分割与子女监护协议范本3篇
- 2024淘宝店铺加盟合作协议范本3篇
- 2025新北师大版英语七年级下单词表
- 《智慧城市概述》课件
- 2024年北京市家庭教育需求及发展趋势白皮书
- GB/T 45089-20240~3岁婴幼儿居家照护服务规范
- 中建道路排水工程施工方案
- 拆机移机合同范例
- 智能停车充电一体化解决方案
- 化学验室安全培训
- 天书奇谭美术课件
- GB/T 18916.15-2024工业用水定额第15部分:白酒
- 部编四年级道德与法治下册全册教案(含反思)
评论
0/150
提交评论