版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市扶沟县包屯高级中学2024届数学高二上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内有极小值点()A.个 B.个C.个 D.个2.已知点是双曲线的左、右焦点,以线段为直径的圆与双曲线在第一象限的交点为,若,则()A.与双曲线的实轴长相等B.的面积为C.双曲线的离心率为D.直线是双曲线的一条渐近线3.若两条直线与互相垂直,则的值为()A.4 B.-4C.1 D.-14.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了名学生,其中到过中共一大会址或井冈山研学旅行的共有人,到过井冈山研学旅行的人,到过中共一大会址并且到过井冈山研学旅行的恰有人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A. B.C. D.5.复数的共轭复数的虚部为()A. B.C. D.6.如图在中,,,在内作射线与边交于点,则使得的概率是()A. B.C. D.7.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④8.已知椭圆C:的一个焦点为(0,-2),则k的值为()A.5 B.3C.9 D.259.数列,,,,…,的通项公式可能是()A. B.C. D.10.已知抛物线上的点到该抛物线焦点的距离为,则抛物线的方程是()A. B.C. D.11.设各项均为正项的数列满足,,若,且数列的前项和为,则()A. B.C.5 D.612.小方每次投篮的命中率为,假设每次投篮相互独立,则他连续投篮2次,恰有1次命中的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.14.若,是双曲线与椭圆的共同焦点,点P是两曲线的一个交点,且为等腰三角形,则该双曲线的渐近线为______15.已知,且,则的最小值为____________16.已知数列满足下列条件:①数列是等比数列;②数列是单调递增数列;③数列的公比满足.请写出一个符合条件的数列的通项公式__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm(即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm),数据统计如下:0.070.240.390.540.610.660.730.820.820.820.870.910.950.980.981.021.021.081.141.201.201.261.291.311.371.401.441.581.621.68(1)求上述数据的众数,并估计这批鱼该项数据的80%分位数;(2)有A,B两个水池,两水池之间有8个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼①将其中汞的含量最低的2条鱼分别放入A水池和B水池中,若这2条鱼的游动相互独立,均有的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;②将其中汞的含量最低的2条鱼都先放入A水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A水池进入B水池且不再游回A水池,求这两条鱼由不同小孔进入B水池的概率18.(12分)如图,在直棱柱中,已知,点分别的中点.(1)求异面直线与所成的角的大小;(2)求点到平面的距离;(3)在棱上是否存在一点,使得直线与平面所成的角的大小是?若存在,请指出点的位置,若不存在,请说明理由.19.(12分)已知动点M到点F(0,)的距离与它到直线的距离相等(1)求动点M的轨迹C的方程;(2)过点P(,-1)作C的两条切线PA,PB,切点分别为A,B,求直线AB的方程20.(12分)已知函数,.(1)当时,求曲线在点处的切线方程;(2)若在区间上有唯一的零点.(ⅰ)求的取值范围;(ⅱ)证明:.21.(12分)已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.22.(10分)某校高三年级进行了一次数学测试,全年级学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若(1)求a,b的值;(2)若成绩落在区间内的人数为36人,请估计该校高三学生的人数
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】利用极小值的定义判断可得出结论.【题目详解】由导函数在区间内的图象可知,函数在内的图象与轴有四个公共点,在从左到右第一个点处导数左正右负,在从左到右第二个点处导数左负右正,在从左到右第三个点处导数左正右正,在从左到右第四个点处导数左正右负,所以函数在开区间内的极小值点有个,故选:A.2、B【解题分析】由题意及双曲线的定义可得,的值,进而可得A不正确,计算可判断B正确,再求出,的关系可得C不正确,求出,的关系,进而求出渐近线的方程,可得D不正确【题目详解】因为,又由题意及双曲线的定义可得:,则,,所以A不正确;因为在以为直径的圆上,所以,所以,所以B正确;在△中,由勾股定理可得,即,所以离心率,所以C不正确;由C的分析可知:,故,所以渐近线的方程为,即,所以D不正确;故选:B3、A【解题分析】根据两直线垂直的充要条件知:,即可求的值.【题目详解】由两直线垂直,可知:,即.故选:A4、B【解题分析】作出韦恩图,设调查的学生中去过中共一大会址研学旅行的学生人数为,根据题意求出的值,由此可得出该学校到过中共一大会址研学旅行的学生人数.【题目详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为,由题意可得,解的,因此,该学校到过中共一大会址研学旅行的学生的人数为.故选:B.【题目点拨】本题考查韦恩图的应用,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.5、B【解题分析】先根据复数除法与加法运算求解得,再求共轭复数及其虚部.【题目详解】解:,所以其共轭复数为,其虚部为故选:B6、C【解题分析】由题意可得,根据三角形中“大边对大角,小边对小角”的性质,将转化为求的概率,又因为,,从而可得的概率【题目详解】解:在中,,,所以,即,要使得,则,又因为,,则的概率是故选:C【题目点拨】本题考查几何概型及其计算方法的知识,属于基础题7、C【解题分析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【题目详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C8、A【解题分析】由题意可得焦点在轴上,由,可得k的值.【题目详解】∵椭圆的一个焦点是,∴,∴,故选:A9、D【解题分析】利用数列前几项排除A、B、C,即可得解;【题目详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D10、B【解题分析】由抛物线知识得出准线方程,再由点到焦点的距离等于其到准线的距离求出,从而得出方程.【题目详解】由题意知,则准线为,点到焦点的距离等于其到准线的距离,即,∴,则故选:B.11、D【解题分析】由利用因式分解可得,即可判断出数列是以为首项,为公差的等差数列,从而得到数列,数列的通项公式,进而求出【题目详解】等价于,而,所以,即可知数列是以为首项,为公差的等差数列,即有,所以,故故选:D12、A【解题分析】先弄清连续投篮2次,恰有1次命中的情况有两种,它们是互斥关系,因此根据相互独立事件以及互斥事件的概率计算公式进行求解.【题目详解】由题意知,他连续投篮2次,有两种互斥的情况,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率为,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.14、【解题分析】根据给定条件求出两曲线的共同焦点,再由椭圆、双曲线定义求出a,b即可计算作答.【题目详解】椭圆的焦点,由椭圆、双曲线的对称性不妨令点P在第一象限,因为等腰三角形,由椭圆的定义知:,则,,由双曲线定义知:,即,,,所以双曲线的渐近线为:.故答案为:【题目点拨】易错点睛:双曲线(a>0,b>0)渐近线方程为,而双曲线(a>0,b>0)的渐近线方程为(即),应注意其区别与联系.15、16【解题分析】根据,且,利用“1”的代换将,转化为,再利用基本不等式求解.【题目详解】因为,且,所以,当且仅当,,即时,取等号.所以的最小值为16.故答案为:16【题目点拨】本题主要考查基本不等式求最值,还考查了运算求解的能力,属于基础题.16、(答案不唯一)【解题分析】根据题意判断数列特征,写出一个符合题意的数列的通项公式即可.【题目详解】因为数列是等比数列,数列是单调递增数列,数列公比满足,所以等比数列公比,且各项均为负数,符合题意的一个数列的通项公式为.故答案为:(答案不唯一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)众数为0.82,8%分位数约为1.34(2)①;②【解题分析】(1)根据题中表格数据即可求得答案;(2)①两条鱼有可能均在A水池也可能都在B水池,故可根据互斥事件的概率结合相互独立事件的概率计算求得答案;②先求出这两条鱼由同一个小孔进入B水池的概率,然后根据对立事件的概率计算方法,求得答案.【小问1详解】由题意知,数据的众数为0.82,估计这批鱼该项数据的80%分位数约为【小问2详解】①记“两鱼最终均在A水池”为事件A,则,记“两鱼最终均在B水池”为事件B,则,∵事件A与事件B互斥,∴两条鱼最终在同一水池的概率为②记“两鱼同时从第一个小孔通过”为事件,“两鱼同时从第二个小孔通过”为事件,…依次类推,而两鱼的游动独立,∴,记“两条鱼由不同小孔进入B水池”为事件C,则C与对立,又由事件,事件,…,事件互斥,∴,即18、(1)(2)(3)不存在,理由见解析【解题分析】(1)由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,建立空间直角坐标系.,利用向量法求解异面直线成角即可.(2)先求出平面DEF的一个法向量,然后利用向量法求解点面距离.(3)设(),由可得关于的方程,从而得出答案.【小问1详解】由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,建立空间直角坐标系.则,,,,故,,从而,所以异面直线AE与DF所成角的大小为.小问2详解】,设平面DEF的法向量为,则,即,取,得到平面DEF的一个法向量为.点A到平面DEF的距离为.【小问3详解】假设存在满足条件的点M,设(),则,从而.即,即,此方程无实数解,故不存在满足条件的点M.19、(1)(2)【解题分析】(1)根据抛物线的定义或者直接列式化简即可求出;(2)方法一:设切线的方程为:,与抛物线方程联立,由即可求出的值,从而得出点的坐标,即可求出直线方程【小问1详解】设M(x,y),则解得.所以该抛物线的方程为【小问2详解】[方法一]:依题意,切线的斜率存在,设切线的方程为:,与抛物线方程联立,得,令,得或.从而或,解得或,所以切点A(-1,),B(2,2),直线AB的斜率为,所以直线AB的方程为,整理得.[方法二]:由可得,所以,设切点为(),则切线的斜率,又切线过点P(,-1),所以,整理得,解得或,所以切点的坐标为A(-1,),B(2,2),所以直线AB的斜率为,所以直线AB的方程为,整理得20、(1);(2)(ⅰ);(ⅱ)证明见解析.【解题分析】(1)求出,,利用导数的几何意义即可求得切线方程;(2)(ⅰ)根据题意对参数分类讨论,当时,等价转化,且构造函数,利用零点存在定理,即可求得参数的取值范围;(ⅱ)根据(ⅰ)中所求得到与的等量关系,求得并构造函数,利用导数研究其单调性和最值,则问题得证.【小问1详解】当时,,则,故,,则曲线在点处的切线方程为.【小问2详解】(ⅰ)因为,故可得,因为,则当时,,则,无零点,不满足题意;当时,若在有一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高压瓷介电容器项目年度分析报告
- 石河子大学《应急决策理论与方法》2022-2023学年第一学期期末试卷
- 初一上册语文3篇
- 石河子大学《数学文化》2021-2022学年第一学期期末试卷
- 石河子大学《编译原理》2021-2022学年第一学期期末试卷
- 沈阳理工大学《数理统计与随机过程》2021-2022学年第一学期期末试卷
- 沈阳理工大学《控制工程基础与信号处理》2021-2022学年期末试卷
- 2022-23-1 本 概论学习通超星期末考试答案章节答案2024年
- 沈阳理工大学《常微分方程》2022-2023学年第一学期期末试卷
- 国际货物买卖合同术语条款
- 电缆敷设施工方案及安全措施
- 百合干(食品安全企业标准)
- 肺血栓栓塞症临床路径(县级医院版)
- 国开成本会计第10章综合练习试题及答案
- 《西游记》-三打白骨精(剧本台词)精选
- T∕CSCS 012-2021 多高层建筑全螺栓连接装配式钢结构技术标准-(高清版)
- 充电站项目合作方案-高新
- 天然水晶介绍PPT
- 急诊科临床诊疗指南-技术操作规范更新版
- 精通版六年级上册小学英语 Unit 3 单元知识点小结
- 名字的来历-完整版PPT
评论
0/150
提交评论