




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省驻马店市现代学校高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列命题中不正确的是(
).A.存在这样的和的值,使得B.不存在无穷多个和的值,使得C.对于任意的和,都有D.不存在这样的和值,使得参考答案:B略2.(4分)函数f(x)=lnx﹣的零点所在的区间是() A. (1,2) B. (2,3) C. (3,4) D. (e,+∞)参考答案:B考点: 函数零点的判定定理.专题: 函数的性质及应用.分析: 根据函数零点的判断条件,即可得到结论.解答: ∵f(x)=lnx﹣,则函数f(x)在(0,+∞)上单调递增,∵f(2)=ln2﹣1<0,f(3)=ln3﹣>0,∴f(2)f(3)<0,在区间(2,3)内函数f(x)存在零点,故选:B点评: 本题主要考查方程根的存在性,利用函数零点的条件判断零点所在的区间是解决本题的关键.3.一辆汽车在一条水平的公路上向正西方向行驶,到A处时测得公路北侧远处一山顶D在西偏北方向上,行驶千米后到达B处,此时测得此山顶在西偏北方向上,仰角为,根据这些测量数据计算(其中),此山的高度是(
)A.
B.
C.
D.
参考答案:B略4.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119取到号码为奇数的频率是
(
)A.0.53
B.0.5
C.0.47
D.0.37参考答案:A略5.已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f()=0,则不等式f()>0的解集为()A.(0,)∪(2,+∞) B.(,1)∪(2,+∞) C.(0,) D.(2,+∞)参考答案:A【考点】奇偶性与单调性的综合.【分析】利用函数的奇偶性和单调性的关系确定不等式,然后解不等式即可.【解答】解:方法1:因为函数f(x)是定义在R上的偶函数,所以不等式f()>0等价为,因为函数f(x)在[0,+∞)上是增函数,且f()=0,所以,即,即或,解得或x>2.方法2:已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f()=0,所以f(x)在(﹣∞,0]上是减函数,且f(﹣)=0.①若,则,此时解得.②若,则,解得x>2.综上不等式f()>0的解集为(0,)∪(2,+∞).故选A.6.(3分)已知函数f(x)=lgx,若对任意的正数x,不等式f(x)+f(t)≤f(x2+t)恒成立,则实数t的取值范围是() A. (0,4) B. (1,4] C. (0,4] D. ,参考答案:C故选:C.点评: 本题考查的知识点是对数函数的图象和性质,二次函数的图象和性质,恒成立问题,难度中档.7.下列说法正确的是()A.a?α,b?β,则a与b是异面直线B.a与b异面,b与c异面,则a与c异面C.a,b不同在平面α内,则a与b异面D.a,b不同在任何一个平面内,则a与b异面参考答案:D【考点】LO:空间中直线与直线之间的位置关系.【分析】根据异面直线的定义和几何特征,逐一分析四个答案的正误,可得结论.【解答】解:若a?α,b?β,则a与b可能平行,可能相交,也可能异面,故A错误;若a与b异面,b与c异面,则a与c可能平行,可能相交,也可能异面,故B错误;若a,b不同在平面α内,则a与b可能平行,可能相交,也可能异面,故C错误;若a,b不同在任何一个平面内,则a与b异面,故D正确;故选:D【点评】本题考查的知识点是空间中直线与直线之间的位置关系,熟练掌握并真正理解异面直线的定义及几何特征,是解答的关键.8.已知a与b均为单位向量,它们的夹角为60°,那么|a+3b|等于(
)
A.
B.
C.
D.4参考答案:C9.已知函数定义域是,则的定义域是(
)A.
B.
C.
D.参考答案:A略10.已知函数y=sinx+acosx的图象关于x=对称,则函数y=asinx+cosx的图象关于直线()A.x=对称 B.x=对称 C.x=对称 D.x=π对称参考答案:C【考点】正弦函数的对称性;两角和与差的正弦函数.【分析】利用两角和的正弦函数化简函数y=sinx+acosx为y=sin(x+φ),tanφ=a,通过函数的图象关于x=对称,推出+φ=kπ+,k∈z,可求得φ=kπ﹣,由此可求得a=tanφ=tan(kπ﹣)=﹣,将其代入函数y=asinx+cosx化简后求对称轴即可.【解答】解:y=sinx+acosx变为y=sin(x+φ),(令tanφ=a)又函数的图象关于x=对称,∴+φ=kπ+,k∈z,可求得φ=kπ﹣,由此可求得a=tanφ=tan(kπ﹣)=﹣,函数y=sinx+cosx=sin(x+θ),(tanθ=﹣)其对称轴方程是x+θ=kπ+,k∈z,即x=kπ+﹣θ又tanθ=﹣,故θ=k1π﹣,k1∈z故函数y=asinx+cosx的图象的对称轴方程为x=(k﹣k1)π++=(k﹣k1)π+,k﹣k1∈z,当k﹣k1=1时,对称轴方程为x=故选C.二、填空题:本大题共7小题,每小题4分,共28分11.参考答案:略12.在中,若,则为
三角形。参考答案:等腰直角13.已知全集=,或,,则
参考答案:14.已知tanθ=2,则sin2θ+sinθcosθ﹣2cos2θ=
.参考答案:【考点】GG:同角三角函数间的基本关系.【分析】利用“1=sin2θ+cos2θ”,再将弦化切,利用条件,即可求得结论.【解答】解:sin2θ+sinθcosθ﹣2cos2θ==∵tanθ=2∴=∴sin2θ+sinθcosθ﹣2cos2θ=故答案为:15.若幂函数的图像经过点,则
.参考答案:
16.在△ABC中,角所对的边分别为,已知,,则b=
.参考答案:2
略17.已知下列各组函数:(1)f(x)=x,g(x)=()2;
(2)f(x)=,g(x)=x+3(3)f(x)=πx2(x>0),圆面积S关于圆半径r的函数;
(4)f(x)=,g(t)=()2.其中表示同一函数的是第组.参考答案:(3)(4)【考点】判断两个函数是否为同一函数.
【专题】函数的性质及应用.【分析】判断函数的定义域以及函数的对应法则,推出结果即可.【解答】解:(1)f(x)=x,g(x)=()2;函数的定义域不相同,不是相同函数.(2)f(x)=,g(x)=x+3;函数的定义域不相同,不是相同函数.(3)f(x)=πx2(x>0),圆面积S关于圆半径r的函数;函数的定义域相同,对应法则相同,是相同函数;
(4)f(x)=,g(t)=()2.函数的定义域相同,对应法则相同,是相同函数;
故答案为:(3)(4).【点评】本题考查函数的定义,相同函数的判断,是基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)设集合,集合,集合C为不等式
的解集.
(1)求;
(2)若,求a的取值范围.参考答案:(1)解得A=(-4,2)
B=,所以
(2)当时,,当时,,因为A=(-4,2),
所以,则且,解得<0.
所以a的范围为<0
19.(14分)(2015春?抚顺期末)某工厂有25周岁以上(含25周岁)的工人300名,25周岁以下的工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,并将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2名,求至少抽到一名25周岁以下的工人的概率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“生产能手与工人的年龄有关”?附表及公示P(K2≥k)0.1000.0500.0100.001k2.7063.8416.63510.828K2=.参考答案:考点:独立性检验的应用.
专题:应用题;概率与统计.分析:(1)由分层抽样的特点可得样本中有25周岁以上、下组工人人数,再由所对应的频率可得样本中日平均生产件数不足60件的工人中,25周岁以上、下组工人的人数分别为3,2,由古典概型的概率公式可得答案;(2)由频率分布直方图可得“25周岁以上组”中的生产能手的人数,以及“25周岁以下组”中的生产能手的人数,据此可得2×2列联表,可得k2≈1.79,由1.79<2.706,可得结论.解答:解:(1)由已知可得,样本中有25周岁以上组工人100×=60名,25周岁以下组工人100×=40名,所以样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),25周岁以下组工人有40×0.05=2(人),故从中随机抽取2名工人所有可能的结果共=10种,其中至少1名“25周岁以下组”工人的结果共=7种,故所求的概率为:;(2)由频率分布直方图可知:在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:
生产能手非生产能手合计
25周岁以上组154560
25周岁以下组152540
合计3070100所以可得K2=≈1.79,因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.点评:本题考查独立性检验,涉及频率分布直方图,以及古典概型的概率公式,属中档题.20.汕头市南澳岛有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。(1)求函数的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?参考答案:解:(1)当
………………2分,..............................................5分故
................6分定义域为
.................................7分
(2)对于, 显然当(元),........................9分
12分∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多。.......14分21.(北京卷文15)已知函数f(x)=2cos2x+sin2x(Ⅰ)求f()的值;(Ⅱ)求f(x)的最大值和最小值.参考答案:【考点】三角函数的最值;二倍角的余弦.【专题】计算题.【分析】(I)直接代入函数解析式求解即可.(II)先用降幂公式,辅助角公式,再用换元法将函数转化为二次函数求最值.【解答】解:(I)f()=2(II)f(x)=2(2(cosx)2﹣1)+(1﹣(cosx)2)=3(cosx)2﹣1∵cosx∈[﹣1,1]∴cosx=±1时f(x)取最大值2cosx=0时f(x)取最小值﹣1【点评】本题主要考查了三角函数的求值,恒等变换和最值问题,也考查了二倍角公式及辅助角公式.22.已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)x﹣f(x)020﹣20(Ⅰ)请写出函数f(x)的最小正周期和解析式;(Ⅱ)求函数f(x)的单调递减区间;(Ⅲ)求函数f(x)在区间[0,]上的取值范围.参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年五一商家促销活动方案策划
- 医疗医学项目汇报与总结计划
- 2025年防汛应急处置方案
- 织袜机工作原理及维修分析
- 2025年湖北省枣阳市白水高中9校联考高三物理试题含解析
- 2025年江苏省吴江市青云中学初三下学期五校联盟考试英语试题含答案
- 沈阳工程学院《英语阅读(4)》2023-2024学年第二学期期末试卷
- 2025届重庆市七校联考高三第四次模拟综合试卷含解析
- 广东科学技术职业学院《电子电路基础实验(下)》2023-2024学年第二学期期末试卷
- 北京政法职业学院《食品安全进展》2023-2024学年第二学期期末试卷
- 精神障碍社区康复服务流程图
- 2024年天津开放大学《机械制图》阶段性考核参考试题库(含答案)
- 结构设计合理性分析
- PICC相关静脉血栓护理查房案例
- (正式版)JBT 5300-2024 工业用阀门材料 选用指南
- 中外政治思想史-形成性测试四-国开(HB)-参考资料
- 2011年10月自考00567马列文论选读试题及答案含解析
- 2024年山东省济南市莱芜区中考一模化学试题
- 膜萃取技术及其应用研究进展
- 六年级语文下册第四单元综合性学习:开展阅读分享会课件
- 瓶盖自动封装机的设计
评论
0/150
提交评论