




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年河南省周口市尚华中学高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.为了解儿子身高与父亲身高的关系,随机抽取了5对父子身高数据如下:父亲身高x(cm)174176176176178儿子身高y(cm)175175176177177y对x的线性回归方程为A.y=x-1
B.y=x+1
C.y=126
D.y=88+参考答案:
D2.设函数是上的减函数,则有
(
)A.
B.
C.
D.参考答案:D3.已知直线,且,则a的值为().A.0或1
B.0 C.-1 D.0或-1参考答案:D解:当时,直线,,此时满足,因此适合题意;当时,直线,化为,可得斜率,化为,可得斜率.∵,∴,计算得出,综上可得:或.
4.已知是定义域为[-3,3]的奇函数,当时,,那么不等式的解集是
A.[0,2]
B.
C.
D.
参考答案:B5.有下列四个命题:①是空集;②若,则;③集合有两个元素;④集合是有限集,其中正确命题的个数是
A、0
B、1
C、2
D、3参考答案:A6.已知全集U=R,集合M={y|y=x2-1,x∈R},集合N={x|y=},则(?UM)∩N=()
参考答案:B7.在正方体ABCD﹣A1B1C1D1中,点M、N分别在AB1、BC1上,且,则下列结论①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④B1D1⊥MN中,正确命题的个数是()A.4 B.3 C.2 D.1参考答案:C【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【分析】先把点M,N放入与平面A1B1C1D1平行的平面GFEH中,利用线面垂直的性质判断①正确,利用平行公理判断②错误,利用面面平行的性质判断③正确,利用面面平行以及线线垂直的性质判断④错误,就可得到结论.【解答】解;在正方体ABCD﹣A1B1C1D1的四条棱A1A,B1B,C1C,D1D上分别取点G,F,E,H四点,使AG=A1A,BF=B1B,CE=C1C,DH=D1D,连接GF,FE,EH,HG,∵点M、N分别在AB1、BC1上,且,∴M在线段GF上,N点在线段FE上.且四边形GFEH为正方形,平面GFEH∥平面A1B1C1D1,∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,∵MN?平面GFEH,∴AA1⊥MN,∴①正确.∵A1C1∥GE,而GE与MN不平行,∴A1C1与MN不平行,∴②错误.∵平面GFEH∥平面A1B1C1D1,MN?平面GFEH,∴MN∥平面A1B1C1D1,∴③正确.∵B1D1∥FH,FH?平面GFEH,MN?平面GFEH,B1D1?平面A1B1C1D1,平面GFEH∥平面A1B1C1D1,且MN与FH不平行,∴B1D1不可能垂直于MN,∴④错误∴正确命题只有①③故选C【点评】本题主要考查立体几何中,线线,线面,面面平行与垂直性质的应用,考查了学生推论能力.空间想象力.8.函数与在同一直角坐标系下的图象大致是(
)A.
B.
C.
D.参考答案:C函数为增函数,且过点(1,1);函数为减函数,且过点(0,2)。综合以上两点可得选项C符合要求。选C。
9.在数列{an}中,,则的值为(
)A. B. C.5 D.以上都不对参考答案:B【分析】先通过列举找到数列的周期,再根据周期求解.【详解】由题得,所以数列的周期为3,又2019=3×673,所以.故选:B【点睛】本题主要考查数列的递推公式和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.(5分)函数f(x)定义域为R,且对任意x、y∈R,f(x+y)=f(x)+f(y)恒成立.则下列选项中不恒成立的是() A. f(0)=0 B. f(2)=2f(1) C. f()=f(1) D. f(﹣x)f(x)<0参考答案:D考点: 抽象函数及其应用.专题: 计算题;函数的性质及应用.分析: 令x=y=0,得到A成立;令x=y=1,得到B成立;令x=y=,得到C成立;令x=﹣y,得到D不成立.解答: 函数f(x)定义域为R,且对任意x、y∈R,f(x+y)=f(x)+f(y)恒成立,令x=y=0,得f(0)=f(0)+f(0),∴f(0)=0,故A成立;令x=y=1,得f(2)=f(1)+f(1)=2f(1),故B成立;令x=y=,得f(1)=f()+f()=2f(),∴f()=,故C成立;令x=﹣y,得f(0)=f(x)+f(﹣x)=0,∴f(﹣x)f(x)≤0,故D不成立.故选D.点评: 本题考查抽象函数的性质和应用,解题时要认真审题,注意等价转化思想的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11.在1,2,3,4共4个数字中,可重复选取两个数,其中一个数是另一个数的2倍的概率是.参考答案:12.已知直线与直线的倾斜角分别为45°和60°,则直线m与n的交点坐标为
.参考答案:(-1,1)因为直线与直线的倾斜角分别为45°和60°,所以,联立与可得,,直线m与n的交点坐标为(-1,1).
13.关于的不等式对恒成立,则实数的取值范围是
.参考答案:略14.求的值是_____________.参考答案:略15.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为__________.参考答案:2+16.给出四个条件:①b>0>a,②0>a>b,③a>0>b,④a>b>0,能推得<成立的是________.参考答案:①②④解析:<?<0,所以①②④能使它成立.17.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为
。
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知等比数列为正项递增数列,
,(1)求的通项公式;(2)求的前n项和.参考答案:(1)
(2)19.已知f(x)是定义在上的奇函数,且f(1)=1,若a,b∈,a+b≠0时,有成立.(Ⅰ)判断f(x)在上的单调性,并证明.(Ⅱ)解不等式:(Ⅲ)若f(x)≤m2﹣2am+1对所有的a∈恒成立,求实数m的取值范围.参考答案:【考点】奇偶性与单调性的综合.【分析】(Ⅰ)由f(x)在上为奇函数,结合a+b≠0时有成立,利用函数的单调性定义可证出f(x)在上为增函数;(II)根据函数的单调性,化原不等式为﹣1≤x+<≤1,解之即得原不等式的解集;(III)由(I)结论化简,可得f(x)≤m2﹣2am+1对所有的a∈恒成立,即m2﹣2am≥0对所有的a∈恒成立,利用一次函数的性质并解关于m的二次不等式,即可得到实数m的取值范围.【解答】解:(I)f(x)在上为增函数,证明如下:设x1,x2∈,且x1<x2,在中令a=x1、b=﹣x2,可得,∵x1<x2,∴x1﹣x2<0,又∵f(x)是奇函数,得f(﹣x2)=﹣f(x2),∴.∴f(x1)﹣f(x2)<0,即f(x1)<f(x2)故f(x)在上为增函数….(II)∵f(x)在上为增函数,∴不等式,即﹣1≤x+<≤1解之得x∈上为增函数,且最大值为f(1)=1,因此,若f(x)≤m2﹣2am+1对所有的a∈恒成立,即1≤m2﹣2am+1对所有的a∈恒成立,得m2﹣2am≥0对所有的a∈恒成立∴m2﹣2m≥0且m2+2m≥0,解之得m≤﹣2或m≥2或m=0即满足条件的实数m的取值范围为{m|m≤﹣2或m≥2或m=0}.20.(本题满分10分)解关于的不等式参考答案:解:当时,
当时,当时,略21.已知函数,若同时满足以下条件:①f(x)在D上单调递减或单调递增;②存在区间,使f(x)在[a,b]上的值域是[a,b],那么称为闭函数.(1)求闭函数符合条件②的区间[a,b];(2)判断函数是不是闭函数?若是请找出区间[a,b];若不是请说明理由;(3)若是闭函数,求实数k的取值范围.参考答案:(1)由y=﹣x3在R上单减,可得,可求a,b(2)由函数y=2x+lgx在(0,+∞)单调递增可知即,结合对数函数的单调性可判断(3)易知y=k+在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程x=k+至少有两个不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.结合二次方程的实根分布可求k的范围另解:(1)易知函数f(x)=﹣x3是减函数,则有,可求(2)取特值说明即可,不是闭函数.(3)由函数f(x)=k+是闭函数,易知函数是增函数,则在区间[a,b]上函数的值域也是[a,b],说明函数f(x)图象与直线y=x有两个不同交点,结合函数的图象可求【解答】解:(1)∵y=﹣x3在R上单减,所以区间[a,b]满足解得a=﹣1,b=1(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则即∴lgx=﹣x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=﹣x只有一个交点故不存在满足条件的区间[a,b],函数y=2x+lgx是不是闭函数(3)易知y=k+在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程x=k+至少有两个不同的解即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.∴得,即所求.另解:(1)易知函数f(x)=﹣x3是减函数,则有,解得,(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则即∴lgx=﹣x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=﹣x只有一个根,所以,函数y=2x+lgx是不是闭函(3)由函数f(x)=k+是闭函数,易知函数是增函数,则在区间[a,b]上函数的值域也是[a,b],说明函数f(x)图象与直线y=x有两个不同交点,令k+则有k=x﹣=,(令t=),如图则直线若有两个交点,则有k.22.已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{an}的通项公式;(2)设bn=,n∈N*,求数列{bn}的前n项和.参考答案:【考点】8E:数列的求和.【分析】(1)通过an+2=qan、a1、a2,可得a3、a5、a4,利用a2+a3,a3+a4,a4+a5成等差数列,计算即可;(2)通过(1)知bn=,n∈N*,写出数列{bn}的前n项和Tn、2Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校研讨室管理办法
- 村级排洪沟管理办法
- 文化创新化管理办法
- 汤阴常态化管理办法
- 某酒店餐具管理办法
- 村流动党员管理办法
- 小区封阳台管理办法
- 学校暑假工管理办法
- 商品收发存管理办法
- 唐山网格化管理办法
- 四年级数学(四则混合运算带括号)计算题专项练习与答案
- 2025版汽车报废回收合同规范范本
- 间隔棒安装机器人研究与应用
- 教育直播与远程教学平台发展
- 金融减免贷款管理办法
- 右肺上叶恶性肿瘤
- 新概念第一册家长会课件
- 夏季绿化养护培训
- 食盐安全培训课件
- 2025年湖北省中考物理+化学合卷试题(含答案及解析)
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
评论
0/150
提交评论