




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
景德镇市重点中学2024学年高二数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点P在抛物线上,点Q在圆上,则的最小值为()A. B.C. D.2.在等差数列中,,且,,,构成等比数列,则公差()A.0或2 B.2C.0 D.0或3.在直三棱柱中,,,则直线与所成角的大小为()A.30° B.60°C.120° D.150°4.椭圆的焦点为、,上顶点为,若,则()A B.C. D.5.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.186.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面7.已知空间向量,且与垂直,则等于()A.-2 B.-1C.1 D.28.如图,某圆锥轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A. B.C. D.9.已知双曲线的左、右焦点分别为,,过点作直线交双曲线的右支于A,B两点.若,则双曲线的离心率为()A. B.C. D.10.已知等差数列满足,则其前10项之和为()A.140 B.280C.68 D.5611.若函数,则()A. B.C.0 D.112.空间四点共面,但任意三点不共线,若为该平面外一点且,则实数的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图),给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3;其中,所有正确结论的序号是________14.已知等差数列满足,,,则公差______15.椭圆C:的左、右焦点分别为,,P为椭圆上异于左右顶点的任意一点,、的中点分别为M、N,O为坐标原点,四边形OMPN的周长为4,则的周长是_____16.给定点、、与点,求点到平面的距离______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和18.(12分)已知函数.(1)记函数,当时,讨论函数的单调性;(2)设,若存在两个不同的零点,证明:为自然对数的底数).19.(12分)定义:设是空间的一个基底,若向量,则称有序实数组为向量在基底下的坐标.已知是空间的单位正交基底,是空间的另一个基底,若向量在基底下的坐标为(1)求向量在基底下的坐标;(2)求向量在基底下的模20.(12分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.21.(12分)在中,内角A、B、C的对边分别为a、b、c,满足(1)求A的大小;(2)若,的面积为,求的周长22.(10分)已知数列满足:(1)求数列的通项公式;(2)设数列的前n项和为.若对恒成立.求正整数m的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】先计算抛物线上的点P到圆心距离的最小值,再减去半径即可.【题目详解】设,由圆心,得,∴时,,∴故选:C.2、A【解题分析】根据等比中项的性质和等差数列的通项公式建立方程,可解得公差d得选项.【题目详解】解:因为在等差数列中,,且,,,构成等比数列,所以,即,所以,解得或,故选:A.3、B【解题分析】根据三棱柱的特征补全为正方体,则,为直线与所成角,连接,则为等边三角形即可得解.【题目详解】根据直三棱柱的特征,补全可得如图所示的正方体,易知,为直线与所成角,连接,则为等边三角形,所以,所以直线与所成角的大小为.故选:B4、C【解题分析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【题目详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.5、B【解题分析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【题目详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B6、D【解题分析】由平面的基本性质结合公理即可判断.【题目详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D7、B【解题分析】直接利用空间向量垂直的坐标运算即可解决.【题目详解】∵∴∴,解得,故选:B.8、C【解题分析】建立空间直角坐标系,分别得到,然后根据空间向量夹角公式计算即可.【题目详解】以过点且垂直于平面的直线为轴,直线,分别为轴,轴,建立如图所示的空间直角坐标系.不妨设,则根据题意可得,,,,所以,,设异面直线与所成角为,则.故选:C.9、A【解题分析】根据给定条件结合双曲线定义求出,,再借助余弦定理求出半焦距c即可计算作答.【题目详解】因,令,,而双曲线实半轴长,由双曲线定义知,,而,于是可得,在等腰中,,令双曲线半焦距为c,在中,由余弦定理得:,而,,,解得,所以双曲线的离心率为.故选:A【题目点拨】方法点睛:求双曲线的离心率的方法:(1)定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;(2)齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;(3)特殊值法:通过取特殊值或特殊位置,求出离心率.10、A【解题分析】根据等差数列的性质,可得,结合等差数列的求和公式,即可求解.【题目详解】由题意,等差数列满足,根据等差数列的性质,可得,所以数列的前10项和为.故选:A.11、A【解题分析】构造函数,再用积的求导法则求导计算得解.【题目详解】令,则,求导得:,所以.故选:A12、A【解题分析】由空间向量共面定理构造方程求得结果.【题目详解】空间四点共面,但任意三点不共线,,解得:.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①②【解题分析】先根据图像的对称性找出整点,再判断是否还有其他的整点在曲线上;找出曲线上离原点距离最大的点的区域,再由基本不等式得到最大值不超过;在心形区域内找到一个内接多边形,该多边形的面积等于3,从而判断出“心形”区域的面积大于3.【题目详解】①:由于曲线,当时,;当时,;当时,;由于图形的对称性可知,没有其他的整点在曲线上,故曲线恰好经过6个整点:,,,,,,所以①正确;②:由图知,到原点距离的最大值是在时,由基本不等式,当时,,所以即,所以②正确;③:由①知长方形CDFE的面积为2,三角形BCE的面积为1,所以曲线C所围成的“心形”区域的面积大于3,故③错误;故答案为:①②.【题目点拨】找准图形的关键信息,比如对称性,整点,内接多边形是解决本题的关键.14、2【解题分析】根据等差数列性质求得,再根据题意列出相关的方程组,解得答案.【题目详解】为等差数列,故由可得:,即,故,故,所以,解得,故答案为:215、【解题分析】先证明则四边形OMPN是平行四边形,进而根据椭圆定义求出a,再求出c,最后求出答案.【题目详解】因为M,O,N分别为的中点,所以,则四边形OMPN是平行四边形,所以,由四边形OMPN的周长为4可知,,即,则,于是的周长是.故答案为:.16、【解题分析】先求出平面的法向量,再利用点到面的距离公式计算即可.【题目详解】设平面的法向量为,点到平面的距离为,,,即,令,得故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)设等差数列的公差为d,由题意得列出方程组,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比数列的定义,可证数列为等比数列,结合前n项和公式,即可得答案.【小问1详解】设等差数列的公差为d,由题意得,解得,所以通项公式【小问2详解】由(1)可得,,又,所以数列是以4为首项,4为公比的等比数列,所以18、(1)在和上单调递增;在上单调递减(2)证明见解析【解题分析】(1)先求导,然后对导数化简整理后再解不等式即可得单调性;(2)要证明,通过求函数的极值可证明,要证,根据有两个不同的零点,将问题转化为证明成立,再通过换元从求函数的最值上证明.【小问1详解】因为,所以,令,得或.所以时,或;时,.所以在和上单调递增;在上单调递减.【小问2详解】因为,所以.当时,,可得在上单调递减,此时不可能存在两个不同的零点,不符合题意.当时,.令,得.当时,;当时,.所以在上单调递增,在上单调递减.而当时,,时,.所以要使存在两个不同的零点,则,即,解得.因为存在两个不同的零点,则,即.不妨设,则,则,要证,即证,即证,即,.即证,令,则,所以在上单调递增,所以,即,所以成立.综上有.【关键点点睛】解决本题的第(1)问的关键是对导函数的分子因式分解;解决第(2)问的关键一是分步证明,二是研究函数的单调性,三是转化思想的运用,四是换元思想的运用.19、(1)(2)【解题分析】(1)根据向量在基底下的坐标为,得出向量在基底下的坐标;(2)根据向量在基底下的坐标直接计算模即可【小问1详解】因为向量在基底下坐标为,则,所以向量在基底下的坐标为.【小问2详解】因为向量在基底下的坐标为,所以向量在基底下的模为.20、(1)(2)【解题分析】(1)根据题意,结合抛物线定义,可求得,即得抛物线方程;(2)由题意推出四边形AOBC是菱形.,设,根据抛物线的对称性,可表示出B,C的坐标,从而利用向量的坐标运算,求得所设参数值,进而求得答案.【小问1详解】的准线为:,作于R,根据抛物线的定义有,所以,因为在的内侧,所以当P,Q,R三点共线时,取得最小值,此时,解得,所以的方程为.小问2详解】因为AB,OC互相垂直平分,所以四边形AOBC是菱形.由,得轴,设点,则,由抛物线的对称性知,,,.由,得,解得,所以在菱形中,,边上的高,所以菱形的面积.21、(1)(2)【解题分析】(1)通过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年洛阳市洛宁县招聘政府专职消防员考试真题
- 仓库保洁服务合同范本
- 出售车位合同范本
- 企业经销合同范本
- 2024年德阳市就业创业促进中心市本级公益性岗位招聘考试真题
- 个人房屋装饰合同范本
- 买断合同属于合同范本
- 低价购买租赁合同范本
- 全案整装合同范本
- 劳务聘用合同范本6
- 《榜样9》观后感心得体会一
- 2024年上海普陀区司法局招聘人民调解员考试真题
- 驾照考试题库及答案(完整版)
- 2024年3、6、9月青少年软件编程Python等级考试一级真题(全3套 含答案)
- 大族激光打标机培训
- 2025中国铁塔公司社会招聘85人高频重点提升(共500题)附带答案详解
- T-IMAS 087-2024 托克托县辣椒地方品种提纯复壮技术规程
- 专题06 现代文阅读(解析版)2015-2024单招考试语文(四川真题)
- 创伤中心临床路径管理制度
- 《教育研究方法》课程教学大纲
- 《固体食品罐用冷轧电镀锡钢板及钢带》编制说明
评论
0/150
提交评论