版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年南京市玄武区中考数学二模试卷(有答案)PAGE12021年江苏省南京市玄武区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.2的相反数是()A.2 B. C.﹣2 D.﹣2.氢原子的半径大约是0.0000077m,将数据0.0000077用科学记数法表示为()A.0.77×10﹣5 B.0.77×10﹣6 C.7.7×10﹣5 D.7.7×10﹣63.﹣介于()A.﹣4与﹣3之间 B.﹣3与﹣2之间 C.﹣2与﹣1之间 D.﹣1与0之间4.下列平面图形,既是中心对称图形,又是轴对称图形的是()A.等腰三角形 B.正五边形 C.平行四边形 D.矩形5.如图是一个几何体的三视图,这个几何体是()A.四棱柱 B.三棱柱 C.三棱锥 D.圆锥6.如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是()A. B. C. D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.8的算术平方根是;8的立方根是.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第1页。8.要使式子在实数范围内有意义,则x的取值范围是.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第1页。9.计算=.10.已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣1时,y=.11.某班的中考英语口语考试成绩如表:考试成绩/分3029282726学生数/人3151363则该班中考英语口语考试成绩的众数比中位数多分.12.若方程x2﹣12x+5=0的两根分别为a,b,则a2b+ab2的值为.13.若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是cm2(结果保留π).14.若一个正多边形的每一个外角都是30°,则这个正多边形的边数为.15.如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E=°.16.如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点(不与B,C重合),点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解不等式组并把它的解集在数轴上表示出来.(2)解方程=1﹣.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第2页。18.先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的数代入求值.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第2页。19.某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图.上网查找学习资源方式频数分布表查找方式频数频率搜索引擎1632%专题网站15a在线网校48%试题题库1020%其他b10%(1)频数分布表中a,b的值:a=;b=;(2)补全频数分布直方图;(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?20.从2名男生和3名女生中随机抽取运动会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生的概率为;(2)抽取2名,恰好是1名男生和1名女生.21.如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,BE=DF,AE=CF.(1)求证:△AFD≌△CEB;(2)若∠CBE=∠BAC,四边形ABCD是怎样的四边形?证明你的结论.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第3页。22.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第3页。23.如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为60°和35°,已知大桥BC的长度为100m,且与地面在同一水平面上.求热气球离地面的高度.(结果保留整数,参考数据:sin35°≈,cos35°≈,tan35°≈,≈1.7)24.已知二次函数y=x2﹣(a﹣1)x+a﹣2,其中a是常数.(1)求证:不论a为何值,该二次函数的图象与x轴一定有公共点;(2)当a=4时,该二次函数的图象顶点为A,与x轴交于B,D两点,与y轴交于C点,求四边形ABCD的面积.25.如图①,在一条笔直的公路上有M、P、N三个地点,M、P两地相距20km,甲开汽车,乙骑自行车分别从M、P两地同时出发,匀速前往N地,到达N地后停止运动.已知乙骑自行车的速度为20km/h,甲,乙两人之间的距离y(km)与乙行驶的时间t(h)之间的关系如图②所示.(1)M、N两地之间的距离为km;(2)求线段BC所表示的y与t之间的函数表达式;(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第4页。26.如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP交⊙O于点D,作AB⊥OP于点C,交⊙O于点B,连接PB.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第4页。(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,①求图中阴影部分的面积;②若点E是⊙O上一点,连接AE,BE,当AE=6时,BE=.27.(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,则OC的最小值为.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第5页。
2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第5页。2021年江苏省南京市玄武区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.2的相反数是()A.2 B. C.﹣2 D.﹣【考点】14:相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得2的相反数是:﹣2.故选:C.2.氢原子的半径大约是0.0000077m,将数据0.0000077用科学记数法表示为()A.0.77×10﹣5 B.0.77×10﹣6 C.7.7×10﹣5 D.7.7×10﹣6【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077用科学记数法表示为7.7×10﹣6,故选D.3.﹣介于()A.﹣4与﹣3之间 B.﹣3与﹣2之间 C.﹣2与﹣1之间 D.﹣1与0之间【考点】2B:估算无理数的大小.【分析】首先由4<7<9,可估算出的取值范围,易得结果.【解答】解:∵4<7<9,∴2,∴﹣3<<﹣2,故选B.4.下列平面图形,既是中心对称图形,又是轴对称图形的是()A.等腰三角形 B.正五边形 C.平行四边形 D.矩形【考点】R5:中心对称图形;P3:轴对称图形.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第6页。【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第6页。【解答】解:A、∵等腰三角形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,故此选项错误;B、∵正五边形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、平行四边形旋转180°后能与原图形重合,此图形是中心对称图形,但不是轴对称图形,故此选项错误;D、∵矩形旋转180°后能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项正确.故选D.5.如图是一个几何体的三视图,这个几何体是()A.四棱柱 B.三棱柱 C.三棱锥 D.圆锥【考点】U3:由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和俯视图为长方形可得此几何体为柱体,由左视图为三角形可得为三棱柱.故选:B.6.如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是()A. B. C. D.【考点】E7:动点问题的函数图象.【分析】从给出的图象中看,中间位置的图象一致,只要计算两边取值中的图象即可作出判断;2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第7页。先计算点P从B到G时扫过的面积S,发现是二次函数,且开口向下,可以否定A和B,再计算点P从9≤t≤12时扫过的面积为正六边形的面积﹣△EMN的面积,计算得到一个开口向下的二次函数,由此作判断.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第7页。【解答】解:由题意得:BP=t,如图1,连接AC,交BE于G,Rt△ABG中,AB=6,∠ABG=60°,∴∠BAG=30°,∴BG=AB=3,由勾股定理得:AG==3,∴AC=2AG=6,当0≤t≤3时,PM=t,∴MN=2t,S=S△BMN=MN•PB==,所以选项A和B不正确;如图2,当9≤t≤12时,PE=12﹣t,∵∠MEP=60°,∴tan∠MEP=,∴PM=(12﹣t),∴MN=2PM=2(12﹣t),∴S=S正六边形﹣S△EMN,=2×(AF+BE)×AG﹣MN•PE,=(6+12)×3﹣×(12﹣t)(12﹣t),=54﹣,=﹣+24t﹣90,此二次函数的开口向下,所以选项C正确,选项D不正确;故选C.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第8页。2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第8页。二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.8的算术平方根是2;8的立方根是2.【考点】24:立方根;22:算术平方根.【分析】依据算术平方根的性质和立方根的性质解答即可.【解答】解:8的算术平方根是2;8的立方根是2.故答案为:2;2.8.要使式子在实数范围内有意义,则x的取值范围是x≥2.【考点】72:二次根式有意义的条件.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣2≥0,解得x≥2,故答案为:x≥2.9.计算=2.【考点】75:二次根式的乘除法.【分析】直接利用二次根式乘运算法则计算得出答案.【解答】解:原式====2.故答案为:2.10.已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣1时,y=6.【考点】G6:反比例函数图象上点的坐标特征.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第9页。【分析】直接把A(2,3)代入反比例函数y=求出k的值,进而可得出反比例函数的解析式,再把x=1代入求出y的值即可.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第9页。【解答】解:∵反比例函数y=的图象经过点A(﹣2,3),∴3=,解得k=﹣6,∴反比例函数的解析式为y=﹣,∴当x=﹣1时,y=﹣=6.故答案为:6.11.某班的中考英语口语考试成绩如表:考试成绩/分3029282726学生数/人3151363则该班中考英语口语考试成绩的众数比中位数多1分.【考点】W5:众数;W4:中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为:1.12.若方程x2﹣12x+5=0的两根分别为a,b,则a2b+ab2的值为60.【考点】AB:根与系数的关系.【分析】先根据根与系数的关系得到a+b=12,ab=5,再把a2b+ab2变形为ab(a+b),然后利用整体代入的方法计算.【解答】解:根据题意得a+b=12,ab=5,所以a2b+ab2=ab(a+b)=5×12=60.故答案为60.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第10页。13.若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是60πcm2(结果保留π).2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第10页。【考点】MP:圆锥的计算.【分析】先利用勾股定理计算出圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算这个圆锥的侧面积.【解答】解:圆锥的底面圆的半径==6,所以这个圆锥的侧面积=×2π•6•10=60π(cm2).故答案为60π.14.若一个正多边形的每一个外角都是30°,则这个正多边形的边数为12.【考点】L3:多边形内角与外角.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷30°,计算即可求解.【解答】解:这个正多边形的边数:360°÷30°=12,故答案为:12.15.如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E=140°.【考点】M5:圆周角定理;L3:多边形内角与外角.【分析】连接BF,BD,根据已知条件得到的度数+的度数=440°,得到的度数=440°﹣360°=80°,根据圆内接四边形的性质即可得到结论.【解答】解:连接BF,BD,∵∠A+∠C=220°,∴的度数+的度数=440°,∴的度数=440°﹣360°=80°,∴∠DBF=40°,∴∠E=180°﹣∠DBF=140°,2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第11页。故答案为:140.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第11页。16.如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点(不与B,C重合),点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是2≤MN<4.【考点】P2:轴对称的性质.【分析】连接AM、AN、AP,过点A作AD⊥MN于点D,由对称性可知AM=AP=AN、△MAN等腰直角三角形,进而即可得出MN=AP,再根据AP的取值范围即可得出线段MN长的取值范围.【解答】解:连接AM、AN、AP,过点A作AD⊥MN于点D,如图所示.∵点P关于直线AB,AC的对称点分别为M,N,∴AM=AP=AN,∠MAB=∠PAB,∠NAC=∠PAC,∴△MAN等腰直角三角形,∴∠AMD=45°,∴AD=MD=AM,MN=AM.∵AB=4,∠B=60°,∴2≤AP≤4,∵AM=AP,∴2≤MN≤4.故答案为:2≤MN<4.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第12页。2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第12页。三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解不等式组并把它的解集在数轴上表示出来.(2)解方程=1﹣.【考点】B3:解分式方程;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),解不等式①,得x≤1,解不等式②,得x>﹣1,则不等式组的解集是﹣1<x≤1;(2)方程两边同乘x﹣3得:3x=(x﹣3)+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,所以x=﹣1是原方程的解.18.先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的数代入求值.【考点】6D:分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.【解答】解:1﹣÷=2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第13页。=1﹣2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第13页。==,当x=3时,原式=﹣.19.某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图.上网查找学习资源方式频数分布表查找方式频数频率搜索引擎1632%专题网站15a在线网校48%试题题库1020%其他b10%(1)频数分布表中a,b的值:a=30%;b=5;(2)补全频数分布直方图;(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)由统计图和统计表可以分别求得a、b的值;(2)根据b的值即可画出直方图;(3)用样本估计总体的思想,即可解决问题;【解答】解:(1)16÷32%=50,a=×100%=30%,b=50×10%=5,故答案为30%;5;2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第14页。(2)频数分布直方图,如图所示,2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第14页。(3)1000×32%=320(名)答:该校利用搜索引擎查找学习资源的学生有320名.20.从2名男生和3名女生中随机抽取运动会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生的概率为;(2)抽取2名,恰好是1名男生和1名女生.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)根据概率的意义写出即可;(2)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)P(女)=;故答案为:;(2)画出树状图如下:共有20种情况,其中“恰好是1名男生和1名女生”的情况有12种,所以,P(恰好是1名男生和1名女生B)==.21.如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,BE=DF,AE=CF.(1)求证:△AFD≌△CEB;2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第15页。(2)若∠CBE=∠BAC,四边形ABCD是怎样的四边形?证明你的结论.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第15页。【考点】KD:全等三角形的判定与性质.【分析】(1)求出AF=CE,再利用“边角边”证明即可;(2)根据全等三角形对应边相等可得AD=BC,全等三角形对应角相等可得∠BCE=∠DAF,再根据内错角相等,两直线平行证明AD∥BC,然后判断出四边形ABCD是平行四边形,求出∠ABC=90°,最后根据有一个角是直角的平行四边形是矩形证明.【解答】证明:(1)∵BE⊥AC,DF⊥AC,∴∠AFD=∠CEB=90°.∵AE=FC,∴AE+EF=FC+EF,∴AF=CE,又∵BE=DF,∴△AFD≌△CEB;(2)四边形ABCD为矩形.∵△AFD≌△CEB,∴AD=BC,∠BCE=∠DAF.∴AD∥BC,∴四边形ABCD为平行四边形,∵∠CBE=∠BAC,又∵∠CBE+∠ACB=90°,∴∠BAC+∠ACB=90°,∴∠ABC=90°,∴四边形ABCD为矩形.22.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第16页。【考点】AD:一元二次方程的应用.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第16页。【分析】设衬衫的单价降了x元.根据题意等量关系:降价后的销量×每件的利润=1250,根据等量关系列出方程即可.【解答】解:设衬衫的单价降了x元.根据题意,得(20+2x)(40﹣x)=1250,解得:x1=x2=15,答:衬衫的单价降了15元.23.如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为60°和35°,已知大桥BC的长度为100m,且与地面在同一水平面上.求热气球离地面的高度.(结果保留整数,参考数据:sin35°≈,cos35°≈,tan35°≈,≈1.7)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AD⊥CB交CB所在直线于点D,利用锐角三角函数的定义求出CD及BD的长,利用BC=CD﹣BD即可得出结论.【解答】解:作AD⊥CB交CB所在直线于点D,由题知,∠ACD=35°,∠ABD=60°,∵在Rt△ACD中,∠ACD=35°,tan35°=≈,∴CD=AD.∵在Rt△ABD中,∠ABD=60°,tan60°==≈1.7,∴BD=AD,∴BC=CD﹣BD=AD﹣AD,∴AD﹣AD=100,解得AD=119m.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第17页。答:热气球离地面的高119m.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第17页。24.已知二次函数y=x2﹣(a﹣1)x+a﹣2,其中a是常数.(1)求证:不论a为何值,该二次函数的图象与x轴一定有公共点;(2)当a=4时,该二次函数的图象顶点为A,与x轴交于B,D两点,与y轴交于C点,求四边形ABCD的面积.【考点】HA:抛物线与x轴的交点.【分析】(1)利用根的判别式符号进行证明;(2)由抛物线解析式求得点B、C、D的坐标,然后利用分割法来求四边形ABCD的面积.【解答】(1)证明:y=x2﹣(a﹣1)x+a﹣2.因为[﹣(a﹣1)]2﹣4(a﹣2)=(a﹣3)2≥0.所以,方程x2﹣(a﹣1)x+a﹣2=0有实数根.所以,不论a为何值,该函数的图象与x轴总有公共点;(2)由题可知:当a=4时,y=x2﹣3x+2,因为y=x2﹣3x+2=(x﹣)2﹣,所以A(,﹣),当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以B(1,0),D(2,0),当x=0时,y=2,所以C(0,2),所以S四边形ABCD=S△ABD+S△BDC=+1=.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第18页。25.如图①,在一条笔直的公路上有M、P、N三个地点,M、P两地相距20km,甲开汽车,乙骑自行车分别从M、P两地同时出发,匀速前往N地,到达N地后停止运动.已知乙骑自行车的速度为20km/h,甲,乙两人之间的距离y(km)与乙行驶的时间t(h)之间的关系如图②所示.2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第18页。(1)M、N两地之间的距离为80km;(2)求线段BC所表示的y与t之间的函数表达式;(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.【考点】FH:一次函数的应用.【分析】(1)根据路程=速度×时间,可求PM,再计算20即可求解;(2)由题意可知B(,0),C(1,40),根据待定系数法可求线段BC所表示的y与t之间的函数表达式;(3)当甲开汽车返回M地时,甲,乙两人之间的距离y(km)最大为60;依此补全函数图象.【解答】解:(1)20×3+20=60+20=80(km).答:M、N两地之间的距离为80km;(2)由题意可知B(,0),C(1,40),设y与x之间的函数表达式为y=kx+b.根据题意得,当x=时,y=0;当x=1时,y=40.所以,解得.所以,y与x之间的函数表达式为y=60x﹣20;2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第19页。(3)如图所示:2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第19页。故答案为:80.26.如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP交⊙O于点D,作AB⊥OP于点C,交⊙O于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,①求图中阴影部分的面积;②若点E是⊙O上一点,连接AE,BE,当AE=6时,BE=3﹣3或3+3.【考点】ME:切线的判定与性质;M2:垂径定理;MO:扇形面积的计算.【分析】(1)由PA切⊙O于点A得:∠PAO=90°,再证明△APO≌△BPO,所以∠PBO=∠PAO=90°,可得结论;(2)①先根据垂径定理得:BC=3,根据勾股定理求圆的半径OB的长,利用三角函数得:∠COB=60°,利用三角形的面积公式和扇形的面积公式分别求S△OPB和S扇形DOB的值,最后利用面积差得结论;②②分两种情况:i)当点E在上时,如图2,作辅助线,构建直角三角形和等腰直角三角形,利用同弧所对的圆周角与半径及勾股定理分别计算EH和BH的长,相加即可得BE的长;ii)当点E在劣弧上时,如图3,作辅助线,同理计算EH和BH的长,最后利用勾股定理求BE的长.【解答】(1)证明:如图1,连接OB,∵OP⊥AB,OP经过圆心O,∴AC=BC,∴OP垂直平分AB,∴AP=BP,2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第20页。∵OA=OB,OP=OP,2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第20页。∴△APO≌△BPO(SSS),∴∠PAO=∠PBO,∵PA切⊙O于点A,∴AP⊥OA,∴∠PAO=90°,∴∠PBO=∠PAO=90°,∴OB⊥BP,又∵点B在⊙O上,∴PB与⊙O相切于点B;(2)①解:如图1,∵OP⊥AB,OP经过圆心O,∴BC=AB=3,∵∠PBO=∠BCO=90°,∴∠PBC+∠OBC=∠OBC+∠BOC=90°,∴∠PBC=∠BOC,∴△PBC∽△BOC,∴∴OC===3,∴在Rt△OCB中,OB===6,tan∠COB==,∴∠COB=60°,∴S△OPB=×OP×BC=×=18,S扇DOB==6π,∴S阴影=S△OPB﹣S扇DOB=18﹣6π;②分两种情况:i)当点E在上时,如图2,作直径AF,交⊙O于F,连接EF、EB,过O作OG⊥AE于G,过F作FH⊥EB于H,∴EG=AG=AE=×=3,∵∠AOB=120°,OA=OB,∴∠OAB=30°,∴∠BEF=∠OAB=30°,Rt△OGE中,由①知:OA=6,∴OG===3,2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第21页。∴2021年南京市玄武区中考数学二模试卷(有答案)全文共25页,当前为第21页。∴△OGA是等腰直角三角形,∴∠OAE=45°,∴∠EBF=∠OAE=45°,∵AF是⊙O的直径,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴EF=AE=6,Rt△EHF中,∠BEF=30°,∴FH=EF=3,∴EH===3,Rt△BHF中,∵∠EBF=45°,∴△BHF是等腰直角三角形,∴BH=FH=3,∴BE=3+3,ii)当点E在劣弧上时,如图3,作直径AF,并⊙O于F,连接OB、OE、BF,过B作BH⊥OE于H,∵AF为⊙O的直径,∴∠ABF=90°,∵∠BAF=30°,∴∠F=∠BOF=60°,∵OA=OE=6,AE=6,∴OA2+OE2=AE2,∴∠AOE=90°,∴∠EOF=90°,∴∠EOB=30°,Rt△OHB中,BH=OB=3,∴OH==3,∴EH=6﹣3,∴BE====3﹣3;综上所述,BE的长为3+3或3﹣3;2021年南京市玄武区中考数学二模
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论