版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
风力发电原理及风力发电的工艺流程发电风力发电机最初出现在十九世纪末。自二十世纪八十年代起,这项技术不断发展并日渐成熟,适合工业应用。近二三十年,典型的风力发电机的风轮直径不断增大,而额定功率也不断提升。在二十一世纪00年代初,风力发电机最具经济效益的额定输出功率范围在600千瓦至750千瓦之间,而风轮直径则在40米至47米之间。当时所有制造商都有生产这类风力发电机。新一代的兆瓦级风力发电机是以这类机种作为基础发展出来的。二零零七年初,有一些制造商开始生产额定功率为几兆瓦而风轮直径达到约90米的风力发电机(例如VestasV903.0兆瓦风电机,NordexN902.5兆瓦风电机等等),甚至有些直径达100米(如GE3.6兆瓦风电机)。这些大型风力发电机主要市场是欧洲。在欧洲,适合风电的地段日渐减少,因此有逼切性安装发电能力尽量高的风力发电机。另一类更大型的为海上应用而设计的风力发电机,已经完成设计并制成原型机。例如REPower公司设计的风力发电机风轮直径达126米,功率达5兆瓦。1)风的功率风的能量指的是风的动能。特定质量的空气的动能可以用下列公式计算。能量=1/2X质量X(速度)^2吹过特定面积的风的的功率可以用下列公式计算。功率=1/2X空气密度X面积X(速度)^3其中,功率单位为瓦特;
空气密度单位为千克/立方米;
面积指气流横截面积,单位为平方米;
速度单位为米/秒。在海平面高度和摄氏15度的条件下,乾空气密度为1.225千克/立方米。空气密度随气压和温度而变。随著高度的升高,空气密度也会下降。於上述公式中可以看出,风的功率与速度的三次方〔立方〕成正比,并与风轮扫掠面积成正比。不过实际上,风轮只能提取风的能量中的一部分,而非全部。2)风力发电机的工作原理现代风力发电机采用空气动力学原理,就像飞机的机翼一样。风并非"推"动风轮叶片,而是吹过叶片形成叶片正反面的压差,这种压差会产生升力,令风轮旋转并不断横切风流。风力发电机的风轮并不能提取风的所有功率。根据Betz定律,理论上风电机能够提取的最大功率,是风的功率的59.6%。大多数风电机只能提取风的功率的40%或者更少。风力发电机主要包含三部分∶风轮、机舱和塔杆。大型与电网接驳的风力发电机的最常见的结构,是横轴式三叶片风轮,并安装在直立管状塔杆上。
(上图来源:DanishWindIndustryAssociation)风轮叶片由复合材料制造。不像小型风力发电机,大型风电机的风轮转动相当慢。比较简单的风力发电机是采用固定速度的。通常采用两个不同的速度-在弱风下用低速和在强风下用高速。这些定速风电机的感应式异步发电机能够直接发产生电网频率的交流电。比较新型的设计一般是可变速的(比如Vestas公司的V52-850千瓦风电机转速为每分钟14转到每分钟31.4转)。利用可变速操作,风轮的空气动力效率可以得到改善,从而提取更多的能量,而且在弱风情况下噪音更低。因此,变速的风电机设计比起定速风电机,越来越受欢迎。机舱上安装的感测器探测风向,透过转向机械装置令机舱和风轮自动转向,面向来风。风轮的旋转运动通过齿轮变速箱传送到机舱内的发电机(如果没有齿轮变速箱则直接传送到发电机)。在风电工业中,配有变速箱的风力发电机是很普遍的。不过,为风电机而设计的多极直接驱动式发电机,也有显著的发展。设於塔底的变压器(或者有些设於机舱内)可提升发电机的电压到配电网电压(香港的情况为11千伏)。所有风力发电机的功率输出是随著风力而变的。强风下最常见的两种限制功率输出的方法(从而限制风轮所承受压力)是失速调节和斜角调节。使用失速调节的风电机,超过额定风速的强风会导致通过业片的气流产生扰流,令风轮失速。当风力过强时,业片尾部制动装置会动作,令风轮剎车。使用斜角调节的风电机,每片叶片能够以纵向为轴而旋转,叶片角度随著风速不同而转变,从而改变风轮的空气动力性能。当风力过强时,叶片转动至迎气边缘面向来风,从而令风轮剎车。叶片中嵌入了避雷条,当叶片遭到雷击时,可将闪电中的电流引导到地下去。
上图:VestasV52-850千瓦风力发电机机舱内的组成部份
(来源:Vestas)3)风力发电机的功率曲线在风速很低的时候,风电机风轮会保持不动。当到达切入风速时(通常每秒3到4米),风轮开始旋转并牵引发电机开始发电。随著风力越来越强,输出功率会增加。当风速达到额定风速时,风电机会输出其额定功率。之後输出功率会保留大致不变。当风速进一步增加,达到切出风速的时候,风电机会剎车,不再输出功率,为免受损。风力发电机的性能可以用功率曲线来表达。功率曲线是用作显示在不同风速下(切入风速到切出风速)风电机的输出功率。
上图:V52-850千瓦风力发电机於不同噪音级别下的工作曲线(噪音级别可透过改变风力发电机的转速而改变)
(来源:Vestas)为特定地点选取合适的风力发电机,一般方法是采用风电机的功率曲线和该地点的风力资料以进行产电量估算。。(在大型风力发电机-资源潜力部分有更多相关资讯)4)风力发电机的额定输出功率风力发电机的额定输出功率是配合特定的额定风速设而定的。由於能量与风速的立方成正比,因此,风力发电机的功率会随风速变化会很大。同样构造和风轮直径的风电机可以配以不同大小的发电机。因此两座同样构造和风轮直径的风电机可能有相当不同的额定输出功率值,这取决於它的设计是配合强风地带(配较大型发电机)或弱风地带(配较小型发电机)。5)风力发电机的主要种类横轴风力发电机和竖轴风力发电机根据叶片固定轴的方位,风力发电机可以分为横轴和竖轴两类。横轴式风电机工作时转轴方向与风向一致,竖轴式风电机转轴方向与风向成直角。横轴式风电机通常需要不停地变向以保持与风向一致。而竖轴式风电机则不必如此,因为它可以收集不同来向的风能。横轴式风电机在世界上占主流位置。逆风风力发电机和顺风风力发电机逆风风电机是一种风轮面向来风的横轴式风电机。而对於顺风风电机,来风是从风轮的背後吹来。大多数的风力发电机是逆风式的。单叶片、双叶片和三叶片风力发电机叶片的数目由很多因素决定,其中包括空气动力效率、复杂度、成本、噪音、美学要求等等。大型风力发电机可由1、2或者3片叶片构成。叶片较少的风力发电机通常需要更高的转速以提取风中的能量,因此噪音比较大。而如果叶片太多,它们之间会相互作用而降低系统效率。目前3叶片风电机是主流。从美学角度上看,3叶片的风电机看上去较为平衡和美观。6)岸上风电场岸上风电系统可以是仅有一台风电机,或者由多台风电机器线性排列或方阵排列形成风电场。风电场的风力发电机相互之间需要有足够的距离,以免造成过强的湍流相互影响,或由於"尾流效应"而严重减低後排风电机的功率输出。为了配合运送大型设备(特别是叶片)到安装现场,须要建设道路。另外亦须要建设输电线,把风电场的输出连接到电网接入点。7)世界各地的风力发电装置到2005年底,世界总风力发电装机容量达58千兆瓦。德国、西班牙、美国、印度和丹麦是以风力发电装机容量来算前几名的国家。在丹麦,风能发电提供该国总用电量的20%。香港第一台大型风力发电机是由香港电灯集团於2005年末安装在南丫岛上,并於2006年二月正式启用。该机额定输出功率为800千瓦。风能是可再生能源发展中最快的部分。由1995年到2005年之间的年增长率为28.5%。根据德国风能会(DEWI)的估计,风能发电的年增长率将保持高增长率,在2012年或之前全球风力发电装机容量可能达到150千兆瓦风力发电叶片制作工艺介绍风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。1碳纤维在风力发电机叶片中的应用叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。1)提高叶片刚度,减轻叶片质量碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。VestaWindSystem公司的V90型3.0MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80型2.0MW发电机且为39m长的叶片质量相同。同样是34m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。2)提高叶片抗疲劳性能风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。3)使风机的输出功率更平滑更均衡,提高风能利用效率使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。4)可制造低风速叶片碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。5)可制造自适应叶片叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国SandiaNationalLaboratories致力于自适应叶片研究,使1.5MW风机的发电成本降到4.9美分/(kWh),价格可和燃料发电相比。6)利用导电性能避免雷击利用碳纤维的导电性能,通过特殊的结构设计,可有效地避免雷击对叶片造成的损伤。7)降低风力机叶片的制造和运输成本由于减少了材料的应用,所以纤维和树脂的应用都减少了,叶片变得轻巧,制造和运输成本都会下降,可缩小工厂的规模和运输设备。8)具有振动阻尼特性碳纤维的振动阻尼特性可避免叶片自然频率与塔架短频率间发生任何共振的可能性。2叶片制造工艺及流程2.1三维编织体/VARTM技术2.1.1材料选择目前的风力发电机叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与玻璃纤维、碳纤维等增强材料,通过手工铺放、树脂注入成型工艺复合而成。对同一种基体树脂,采用玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采用碳纤维增强的复合材料制造的叶片的性能。随着叶片长度不断增加,叶片对增强材料的强度和刚性等性能也提出了新的要求,从而对玻璃纤维的拉伸强度和模量也提出了更高的要求。为了保证叶片能够安全的承担风温度等外界载荷,大型风机叶片可以采用玻璃纤维/碳纤维混杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,则使用碳纤维作为增强材料。这样,不仅可以提高叶片的承载能力,由于碳纤维具有导电性,也可以有效地避免雷击对叶片造成的损伤。2.1.2三维编织增强材料预成型加工方法有:手工铺层、编织法、针织法、热成型连续原丝毡法、预成型定向纤维毡法、CompForm法和三维编织技术等。编织法过去大多采用经纬交织的机织物来制作玻/碳纤维基布材料,从承载状态上来考虑采用经编织物作为增强复合材料的基布比经纬交织的机织物具有更明显的优势。如图1所示:图1、经编织物结构图这类轴向织物由于承受载荷的纱线系统按要求排列并绑缚在一起,因此能够处于最佳的承载状态。另一方面,由于机织物中的纱线呈波浪形弯曲,再加上纱线自身的捻度,使其模量、拉伸强度和抗冲击强度都有一定的损失。而轴向技术使得织物的纱线层能按照特定的方向伸直取向,故每根纤维力学理论值的利用率几乎能达到100%。此外,轴向织物的纱线层层铺叠,按照不同的强度和刚度要求,可以在织物的同一层或不同层采用不同种类的纤维材料,如玻璃纤维、碳纤维或碳/玻混杂纤维,再按照编织点由编织纱线将其绑缚在一起。除了经编轴向织物外,还可以利用纬编绑缚系统开发纬编轴向织物,如图2所示:图2、纬编织物结构图根据经纬编结构的特性,纬编轴向织物较经编绑缚结构具有更好的可成型性,因此在风电叶片结构设计中具有极好的应用前景。三维编织技术的发展是因为单向或二向增强材料所制得的复合材料层间剪切强度低,抗冲击性差,不能用作主受力件。采用三维编织技术不仅能直接编织复杂结构形状的不分层整体编织物,从根本上消除铺层。三维编织复合材料采用了三维编织技术,其纤维增强结构在空间上呈网状分布,可以定制增强体的形状,制成的材料浑然一体,不存在二次加工造成的损伤,因此这种材料不仅具备传统复合材料所具有的高比强度、高比模量等优点,还具有高损伤容限和断裂韧性以及耐冲击、不分层、抗开裂和耐疲劳等特点。按编织工艺分,常见的编织材料可分为四步编织法、二步编织法和多层联锁编织法等3类。其中四步编织法发明最早,应用最广。按编织预制件的横截面形状,三维编织方法可分为矩形编织、圆形编织和异形编织3大类,其中矩形编织工艺适合编织矩形和板状材料的增强体,而圆形编织适合编织圆形和管型材料的增强体,异形编织则用于编织各种特殊形状的增强体。只要织物的结构形状是由矩形组合或是圆或圆的某一部分组合而成,就可以用编织方法一次成型。四步编织法发明之初,所有的纱线都参加编织运动,且全部编织纱都在空间3个方向内发生相对运动,因此这种编织方法是一种真正的三维编织工艺。具体编织过程如图3(a)所示,在一个编织周期中,编织纱沿着正交的2个方向依次进行往复运动,一个完整的编织周期中携纱器需要完成4个动作,因此被称为四步法。如图3(b)所示,由于结构中所有纱线在空间中的分布只有4个不同的方向,因此制成的复合材料被称为三维四向编织复合材料。针对三维编织物的特点,RTM工艺是三维编织复合材料成型的最有效方法。根据三维编织物的形状制成模具,将预成型坯装入模腔,此时同时控制了纤维体积含量和制品形状;预成型坯中纤维束间的空隙为树脂传递提供了通道,而且三维编织体很好的整体性提高了预成型坯耐树脂冲刷的能力。2.1.3RTM工艺树脂传递模塑法简称RTM法,是首先在模具型腔中铺放好按性能和结构要求设计的增强材料预成型体,采用注射设备通过较低的成型压力将专用低粘度树脂体系注入闭合式型腔,由排气系统保证树脂流动顺畅,排出型腔内的全部气体和彻底浸润纤维,由模具的加热系统使树脂等加热固化而成型为FRP构件。RTM工艺属于半机械化的FRP成型工艺,特别适宜于一次整体成型的风力发电机叶片,无需二次粘接。与手糊工艺相比,这种工艺具有节约各种工装设备、生产效率高、生产成本低等优点。同时由于采用低粘度树脂浸润纤维以及加温固化工艺,复合材料质量高,且RTM工艺生产较少依赖工人的技术水平,工艺质量仅仅依赖于预先确定好的工艺参数,产品质量易于保证,废品率低,工艺流程如图4所示。注胶压力的选择一直是RTM成型工艺中一个有争议的问题。低压注胶可促进树脂对纤维表面的浸润;高压注胶可排出残余空气,缩短成型周期,降低成本。加大注胶压力可提高充模速度和纤维渗透率。所以有人赞成在树脂传递初期使用低压以使树脂较好地浸润纤维,而当模具型腔中已基本充满树脂时使用较大压力以逐出残余空气。但压力不能太大,否则会引起预成型坯发生移动或变形。注胶温度取决于树脂体系的活性期和达到最低粘度的温度。在不至于过大缩短树脂凝胶时间的前提下,为了使树脂能够对纤维进行充分的浸润,注胶温度应尽量接近树脂达到最低粘度的温度。温度过高会缩短树脂的活性期,影响树脂的化学性质,进而可能影响到制品的力学性能;温度过低会使树脂粘度增大,压力升高,也阻碍了树脂正常渗入纤维的能力。注射温度和模具预热温度的选择要结合增强体的特性及模具中的纤维量等综合考虑。RTM工艺的技术含量高,无论是模具设计和制造、增强材料的设计和铺放、树脂类型的选择与改性、工艺参数(如注塑压力、温度、树脂粘度等)的确定与实施,都需要在产品生产之前通过计算机模拟分析和实验验证来确定。2.1.4VARTM工艺随着技术的发展,现已开发出多种较先进的工艺,如预浸料工艺、机械浸渍工艺及真空辅助灌注工艺。真空
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (高考英语作文炼句)第24篇译文老师笔记
- 开题报告:指向完整儿童发展的形成性评价研究
- 开题报告:粤港澳跨境就读青少年的国家认同研究
- 《货物运输实务》课件 6.3危险货物的运输组织
- 开题报告:新时代中小学“大先生”的素养结构、成长轨迹及支持政策研究
- 开题报告:新时代爱国主义教育长效机制研究
- 2024年化工原料购销协议范本版
- (银行培训课件)单位定期存款运营管理部贾光普 (村镇银行)
- 2024年专业羽毛球场租赁合同指南版
- 2024年事业单位管理岗位劳动协议
- 六年级上册美术说课稿 -第7课《 变化多样的脸谱》桂美版(广西版)
- 人教版七年级数学上册3.4 第3课时《 球赛积分表问题》说课稿1
- DL∕T 5210.2-2018 电力建设施工质量验收规程 第2部分:锅炉机组
- 2024-2030年中国医用级聚乳酸行业市场深度调研及进入壁垒研究报告
- 送餐的协议书(2024版)
- 2024年物业经理(中级)职业鉴定考试题库(含答案)
- 大学语文(华北科技学院)智慧树知到期末考试答案章节答案2024年华北科技学院
- 品质月报表完整版本
- 2024年广东省铁路建设投资集团限公司校招易考易错模拟试题(共500题)试卷后附参考答案
- 公司战略与风险管理智慧树知到期末考试答案章节答案2024年哈尔滨商业大学
- 《医学遗传与优生》考试复习题库(含答案)
评论
0/150
提交评论