基本开关电源拓扑(3)-拓扑的本质_第1页
基本开关电源拓扑(3)-拓扑的本质_第2页
基本开关电源拓扑(3)-拓扑的本质_第3页
基本开关电源拓扑(3)-拓扑的本质_第4页
基本开关电源拓扑(3)-拓扑的本质_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页基本开关电源拓扑(3)-拓扑的本质

四,基本(开关电源)拓扑分析对于开关电源拓扑来说:(电感器)、开关管和(二极管)之间的节点被称为交换节点;(电流)从电感器流入节点后,既可以从二极管流出,也可以从开关管流出(取决于开关管状态),所以节点处的电流在二极管和开关管之间交替流动,一直保持大电流,同时节点电压也必然大范围跳动(电感器两端电压跳变),可以看到其电压是斩波式的。如下图所示为BUCK-BOOST、BOOST和BUCK拓扑,红色圈内为各个拓扑的交换节点;以BUCK-BOOST拓扑为例,在该节点上开关管的“导通”时节点的电压为+12V,而开关管“关断”时节点的电压为-5.5V,所以该节点是电压波形是范围为12V和-5.5V的斩波。

——交换节点处天然形成一个电场(天线)(电压跳变范围大,电流大),会对四周造成(射频)干扰(EMI),输出(电源)电压导线可能会接收到该辐射干扰并传递给负载端,造成噪声干扰。

如上图所示,开关电源的三种基本拓扑结构,其它所有开关电源拓扑都是基于这三种拓扑的改进、组合,但开关拓扑(工作原理)是一致的;我们只需要彻底掌握这三种基本电源拓扑,其它开关电源拓扑分析起来就会变得简单:

如下左图所示,红色框内MOS管替代续流二极管,变成同步BUCK电源拓扑结构(上下MOS管需要进行同步设计:一个MOS管“关断”的同时另一个MOS管“导通”);如下右图所示,通过变压器来替换电感器,变成反激式拓扑,同时还有推挽式、正极式,半桥、全桥电源拓扑等等;可以将BUCK、BOOST及BUCK-BOOST拓扑,两两组合级联变成新种类电源拓扑:Cuk、Se(pi)c和Zeta拓扑等。

1,三种基本拓扑

电源的输入到输出转换拓扑电路,由开关管+电感器+二极管的串、并组合而成,单纯从组合逻辑来说有n种(N>10),那为什么只有这三种是有效的电源拓扑呢?

我记得在《(电阻器)应用》章节中说起过“共地”和“浮地”的设计问题,一般接地设备的单板上所有地,不管是否在单板内部共地,最终都会连接到“大地”上,从而回流到“大地”;那为什么大家都要连到“大地”呢?因为地球是等势体,所有设备只要连在“大地”上,那么两个设备之间便共地了(接地其实并非如此简单,后续《(电磁兼容)基础》再详细分析接地问题)。

——电网系统参考的“地”便是“大地”,所有电网系统电源输出后需最终回流到“大地”。

那两个设备之间相互“浮地”行不行?只要没有(电气)接触(举个栗子:用光缆连接)应该是可以的。但只要有电气接触,就可能存在两个问题:

两个有不同参考地系统的(信号),是无法相互识别和判断的;——只针对单端信号,差分信号AC(耦合)后,不受影响(共(模电)平接收端提供);

两个信号线接触瞬间可能产生浪涌电流,造成器件损坏,设计中注意浪涌保护。说回电源拓扑,除了这BUCK,BOOST,BUCK-BOOST三种电源基本拓扑之外,部分拓扑结构的输入和输出之间没有公共地(对于非隔离式拓扑,电源无法回流),即开关拓扑与系统的其它部分之间没有合适的参考地。如下图所示,以BUCK-BOOST拓扑电路的变种为例,在开关导通或关断过程中,没有一个共同的“地”始终将输入端和输出端连接在一起,导致电源回流中断;所以对于BUCK-BOOST拓扑来说,必须将二极管和开关管放在电感器的同一边,如上一节BUCK-BOOST结构图所示。

——对于隔离式开关电源拓扑,由于采用了变压器,所以回流是通过变压器来实现的,输入电源与输出电源之间不需要公共地。

那再也找不出三种拓扑之外的有共地的拓扑了么?如下图所示,不同电感器的连接方式,在设置合适地后,可得到三个不同的端点:输入端、输出端和地端。

若电感器与输出端相连,则得到BUCK拓扑电路;若电感器与输入端相连,则得到BOOST拓扑电路;——根据刚刚的分析,输入或输出端接电感器,那么输入、输出的回流地必然不能串接开关管或则二极管,那么开关管和二极管只能分别串接在输出/输入和地端;而除了BUCK和BOOST的电源拓扑结构外,我们组合电路后得到其它拓扑都是无效的;举个栗子,如上图BUCK拓扑中:如果将二极管串接在输入端,开关管串接在地端,那么当开关管导通时,输入端和地端短路,不是有效的拓扑结构。

若电感器与地端相连,则得到BUCK-BOOST拓扑电路。2,三种基本拓扑(DC)传递函数比较

伏秒定律是在电源稳态工作下,所有开关拓扑必须要满足的定律。如果在电源稳态下不满足伏秒定律:Von*ton=Voff*toff;那么我们从电感器公式VΔt=LΔI,可得LΔIon≠LΔIoff,那么电感器磁芯磁场强度将往一个方向偏,最终导致电感器磁芯饱和而损坏开关管或电感器本身。

同样我们对于不同开关拓扑占空比的定义是一样:开关管的“导通”时间Ton占开关周期T的比例,即D=Ton/T;如果对于连续模式来说T=Ton+Toff(不连续模式下:T>Ton+Toff)。如下图所示,我们可以根据伏秒定律和占空比定义来推导不同拓扑结构的直流传递函数。

所以我们分别得到了理想情况下(不计算开关管、二极管、电感器等损耗)的三种基本电源拓扑的直流传递函数:

BUCK拓扑的直流传递函数:D=Vo/Vin;BOOST拓扑的直流传递函数:D=(Vo-Vin)/Vo=1–Vin/Vo;BUCK-BOOST拓扑的直流传递函数:D=Vo/(Vin+Vo)=1–Vin/(Vin+Vo)。——我们通过直流传递函数,看到所有拓扑中当Vin输入电压不变时,随Vo输出电压增加,占空比D变大;但是BOOST和BUCK-BOOST拓扑的占空比最大不能超过50%,。

那么我们得到了开关电源拓扑的直流传递函数又有啥用呢?我们在后续开关电源具体设计中详细分解。

3,三种基本拓扑电流比较

三种基本拓扑各种电流之间的关系如下图所示:IL为平均电感电流,Io为输出电流,IIN为输入电流,ISW为开关管电流,ID为二极管电流。

关于IL与Io的关系,需要注意的是:

对于BUCK拓扑来说电感电流IL与输出电流Io相同,原因是电感器是串在输出端的,所有输出电流均流过电感器提供;对于BOOST和BUCK-BOOST拓扑来说,电感电流IL则与输出电流Io并不相同,甚至远大于输出电流(取决于其拓扑结构),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论