




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数公式数学术语01函数关系基本公式诱导公式其它公式目录030204基本信息三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。函数关系函数关系倒数关系:①;②;③。商数关系:①;②。平方关系:①;②;③。诱导公式诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:公式二:设为任意角,与的三角函数值之间的关系:公式三:任意角与的三角函数值之间的关系:公式四:与的三角函数值之间的关系:公式五:与的三角函数值之间的关系:公式六:及与的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限
.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;基本公式和差化积公式倍角公式半角公式辅助角公式基本公式和差化积公式口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.倍角公式证明:sin3a=sin(a+2a)=sin2a·cosa+cos2a·sina=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-cos2a)cosa=4cos3a-3cosa半角公式(正负由所在的象限决定)辅助角公式证明:由于,显然,且故有:其它公式正弦定理余弦定理降幂公式幂级数泰勒展开式傅里叶级数010302040506其它公式正弦定理正弦定理详见词条:正弦定理在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.则有
:正弦定理变形可得:余弦定理详见词条:余弦定理图1余弦定理对于如图1所示的边长为a、b、c而相应角为α、β、γ的△ABC,有:也可表示为:降幂公式sin²α=[1-cos(2α)]/2cos²α=[1+cos(2α)]/2tan²α=[1-cos(2α)]/[1+cos(2α)]幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a都是常数,这种级数称为幂级数。泰勒展开式泰勒展开式又叫幂级数展开法实用幂级数:,(!!表示双阶乘)在解初等三角函数时,只需记住
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化产业中涂层的耐磨损性能研究考核试卷
- 工业设计中的产品生命周期管理考核试卷
- 信托公司业务流程标准化考核试卷
- 兔饲养繁殖技术的优化考核试卷
- 新能源汽车充电设施规划与布局优化考核试卷
- 收购公司的合同范本
- 营业执照合同范本
- 定制柜定金合同范本
- 木材板材加工合同范本
- 纱窗厂用工合同范本
- 北京市东城区2025年公开招考539名社区工作者高频重点提升(共500题)附带答案详解
- 2025福建福州地铁集团限公司运营分公司校园招聘高频重点提升(共500题)附带答案详解
- 2025至2030年中国电子护眼台灯数据监测研究报告
- 儿童睡眠障碍治疗
- 2025年浙江省温州乐清市融媒体中心招聘4人历年高频重点提升(共500题)附带答案详解
- 2025夏季广东广州期货交易所招聘高频重点提升(共500题)附带答案详解
- 北京市丰台区2024-2025学年高三上学期期末英语试题
- 2025上海市嘉定工业区农村青年干部招聘22人历年高频重点提升(共500题)附带答案详解
- 《兽医基础》练习题及参考答案
- 2025年煤矿探放水证考试题库
- 2024年度个人珠宝首饰分期购买合同范本3篇
评论
0/150
提交评论