异方差性的概念类型后果检验及其修正方法含案例演示文稿_第1页
异方差性的概念类型后果检验及其修正方法含案例演示文稿_第2页
异方差性的概念类型后果检验及其修正方法含案例演示文稿_第3页
异方差性的概念类型后果检验及其修正方法含案例演示文稿_第4页
异方差性的概念类型后果检验及其修正方法含案例演示文稿_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

异方差性的概念类型后果检验及其修正方法含案例演示文稿当前第1页\共有71页\编于星期四\23点优选异方差性的概念类型后果检验及其修正方法含案例当前第2页\共有71页\编于星期四\23点异方差性

Heteroscedasticity一、异方差性的概念及类型二、异方差性的后果三、异方差性的检验四、异方差的修正五、案例当前第3页\共有71页\编于星期四\23点1.什么是异方差?对于模型(i=1,2,…,n)同方差性假设为(i=1,2,…,n)如果出现(i=1,2,…,n)即对于不同的样本点i

,随机误差项的方差不再是常数,则认为出现了异方差性。注意:对于每一个样本点i,随机误差项i都是随机变量,服从均值为0的正态分布;而方差i2衡量的是随机误差项围绕其均值0的分散程度。所以,所谓异方差性,是指这些服从正态分布的随机变量围绕其均值0的分散程度不同。

一、异方差性的概念及类型当前第4页\共有71页\编于星期四\23点异方差性示意图

概率密度或者,也可以说,对于每一个样本点i,随机误差项的方差i2衡量的是被解释变量的观测值Yi围绕回归线E(Yi)=0+1Xi1+…+kXik的分散程度。而所谓异方差性,是指被解释变量观测值的分散程度随样本点的不同而不同。【庞皓P130】当前第5页\共有71页\编于星期四\23点2.异方差的类型

同方差性假定是指,每个i围绕其0均值的方差并不随解释变量Xi的变化而变化,不论解释变量的观测值是大还是小,每个i的方差保持相同,即

i2=常数(i=1,2,…,n)

在异方差的情况下,i2已不是常数,它随Xi的变化而变化,即i2=f(Xi)(i=1,2,…,n)

当前第6页\共有71页\编于星期四\23点

异方差一般可以归结为三种类型:(1)单调递增型:

i2=f(Xi)随Xi的增大而增大;(2)单调递减型:

i2=f(Xi)随Xi的增大而减小;(3)复杂型:

i2=f(Xi)随Xi的变化呈复杂形式。当前第7页\共有71页\编于星期四\23点3.实际经济问题中的异方差性

在该模型中,i的同方差假定往往不符合实际情况。对高收入家庭来说,储蓄的差异较大;低收入家庭的储蓄则更有规律性(如为某一特定目的而储蓄),差异较小。

因此,i的方差往往随Xi的增加而增加,呈单调递增型变化。例:在截面资料下研究居民家庭的储蓄行为

Yi=0+1Xi+i

Yi和Xi分别为第i个家庭的储蓄额和可支配收入。当前第8页\共有71页\编于星期四\23点

一般情况下:居民收入服从正态分布,处于中等收入组中的人数最多,处于两端收入组中的人数最少。而人数多的组平均数的误差小,人数少的组平均数的误差大。所以样本观测值的观测误差随着解释变量观测值的增大而先减后增。

例:以绝对收入假设为理论假设、以分组数据(将居民按照收入等距离分成n组,取组平均数为样本观测值)作样本建立居民消费函数:

Ci=0+1Yi+i

如果样本观测值的观测误差构成随机误差项的主要部分,那么对于不同的样本点,随机误差项的方差随着解释变量观测值的增大而先减后增(U形),出现了异方差性。当前第9页\共有71页\编于星期四\23点例:以某一行业的企业为样本建立企业生产函数模型

Yi=Ai1

Ki2

Li3ei产出量为被解释变量,选择资本、劳动、技术等投入要素为解释变量,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。

由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。

这时,随机误差项的方差并不随某一个解释变量观测值的变化而呈规律性变化,为复杂型的一种。当前第10页\共有71页\编于星期四\23点规律一般经验告诉人们:对于采用截面数据作样本的计量经济学问题,由于在不同样本点(即不同空间)上解释变量以外的其他因素的差异较大,所以往往存在异方差性。当前第11页\共有71页\编于星期四\23点1.参数估计量非有效

当计量经济学模型出现异方差性时,其普通最小二乘法参数估计量仍然具有无偏性,但不具有有效性。而且,在大样本情况下,参数估计量仍然不具有渐近有效性。即同方差和无序列相关条件。因为在有效性证明(见教材P70-71)中利用了

二、异方差性的后果当前第12页\共有71页\编于星期四\23点2.变量的显著性检验失去意义在变量的显著性检验中,t统计量

(j=0,1,2,…,k)

如果出现了异方差性,而仍按同方差时的公式计算t统计量,将使t统计量失真【偏大或偏小,见第三版P110补充说明】,从而使t检验失效【使某些原本显著的解释变量可能无法通过显著性检验,或者使某些原本不显著的解释变量可能通过显著性检验】。

当前第13页\共有71页\编于星期四\23点3.模型的预测失效

一方面,由于上述后果,使得模型不具有良好的统计性质;所以,当模型出现异方差性时,Y预测区间的建立将发生困难,它的预测功能失效。

其中【书上这句话有点问题】当前第14页\共有71页\编于星期四\23点1.检验方法的共同思路

既然异方差性就是相对于不同的解释变量观测值,随机误差项具有不同的方差,那么:检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。

各种检验方法正是在这个共同思路下发展起来的。

三、异方差性的检验(教材P111)当前第15页\共有71页\编于星期四\23点问题在于:用什么来表示随机误差项的方差?一般的处理方法:当前第16页\共有71页\编于星期四\23点2.图示检验法(1)用X-Y的散点图进行判断(李子奈P108)看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中)。随机误差项的方差描述的是取值的离散程度。而由于被解释变量Y与随机误差项有相同的方差,所以利用Y与X之间的相关图形也可以粗略地看出的离散程度与X之间是否有相关关系。当前第17页\共有71页\编于星期四\23点看是否形成一条斜率为零的直线。(教材P111)当前第18页\共有71页\编于星期四\23点3.戈里瑟(Gleiser)检验与帕克(Park)检验戈里瑟检验与帕克检验的思想:

如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。由于f(Xj)的具体形式未知,因此需要选择各种形式进行试验。当前第19页\共有71页\编于星期四\23点4.戈德菲尔德-匡特(Goldfeld-Quandt)检验

G-Q检验以F检验为基础,仅适用于样本容量较大、异方差为单调递增或单调递减的情况。

G-Q检验的思想:先按某一被认为有可能引起异方差的解释变量对样本排序,再将排序后的样本一分为二,对子样本①和子样本②分别进行OLS回归,然后利用两个子样本的残差平方和之比构造F统计量进行异方差检验。当前第20页\共有71页\编于星期四\23点G-Q检验的步骤:①将n对样本观察值(Xi1,Xi2,…,Xik,Yi)按某一被认为有可能引起异方差的解释变量观察值Xij的大小排队。②将序列中间的c=n/4个观察值除去,并将剩下的观察值划分为较小与较大的容量相同的两个子样本,每个子样本的样本容量均为(n-c)/2。当前第21页\共有71页\编于星期四\23点⑥检验。给定显著性水平,确定F分布表中相应的临界值F(1,2)。若F≥F(1,2),则拒绝H0,认为存在异方差;反之,则不存在异方差。

H0成立,意味着同方差;H1成立,意味着异方差。当前第22页\共有71页\编于星期四\23点5.怀特(White)检验G-Q检验需按某一被认为有可能引起异方差的解释变量对样本排序,而且只能检验单调递增或单调递减型异方差;怀特(White)检验则不需要排序,且对任何形式的异方差都适用。当前第23页\共有71页\编于星期四\23点怀特(White)检验的基本思想与步骤下面,以二元回归为例,说明怀特检验的基本思想与步骤:设回归模型为:首先,对该模型做普通最小二乘回归,记残差为:然后,以上述残差的平方为被解释变量,以原模型中各解释变量的水平项、平方项(还可以有更高次项)、交叉项等各种组合为解释变量,做如下的辅助回归:当前第24页\共有71页\编于星期四\23点则在同方差性假设下【也即H0:1=…=5=0

】,该辅助回归方程的可决系数R2与样本容量n的乘积渐近地服从自由度=辅助回归方程中解释变量个数【该例=5】的2分布:当前第25页\共有71页\编于星期四\23点怀特(White)检验的EViews软件操作要点在OLS的方程对象Equation中,选择View/Residualtests/WhiteHeteroskedasticity。在选项中,EViews提供了包含交叉项的怀特检验“WhiteHeteroskedasticity(crossterms)”和没有交叉项的怀特检验“WhiteHeteroskedasticity(nocrossterms)”这样两个选择。软件输出结果:最上方显示两个检验统计量:F统计量和White统计量nR2;下方则显示以OLS的残差平方为被解释变量的辅助回归方程的回归结果。

以教材P118的例子为例,包含交叉项的怀特检验“WhiteHeteroskedasticity(crossterms)”的输出结果为:当前第26页\共有71页\编于星期四\23点怀特检验的软件输出界面:可见,怀特统计量nR2=20.55085【=31×0.662931】,大于自由度【也即辅助回归方程中解释变量的个数】为5的2分布临界值11.07,因此,在5%的显著性水平下拒绝同方差的原假设。当前第27页\共有71页\编于星期四\23点四、异方差的修正加权最小二乘法(weightedleastsquares)异方差稳健标准误法(heteroscedasticity–robuststandarderror)当前第28页\共有71页\编于星期四\23点1.加权最小二乘法的基本思想加权最小二乘法(WeightedLeastSquares

):是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。例如:在递增的异方差下,与较小的Xi对应的Yi离回归线较近,残差ei较小;而与较大的Xi对应的Yi离回归线较远,残差ei较大。为了更可靠地估计总体回归函数,我们应该给那些紧密围绕其(总体)均值的观测值较大的权数,而给那些远离其均值的观测值较小的权数。——古扎拉蒂P355(一)加权最小二乘法当前第29页\共有71页\编于星期四\23点

于是,我们可以对较小的残差平方ei2赋予较大的权数,对较大的残差平方ei2赋予较小的权数。

加权最小二乘法就是对加了权重的残差平方和实施OLS法:→最小当前第30页\共有71页\编于星期四\23点例如:如果在检验过程中已经知道:2.一个例子(重要!)当前第31页\共有71页\编于星期四\23点i=1,2,…,n在该模型中,存在

即满足同方差性。

这就是加权最小二乘法。

在这里,权数为。注意:将这里的权数平方之后,才是对残差平方加权的权数。当前第32页\共有71页\编于星期四\23点【第三版P114补充】可见,实施加权最小二乘法的关键是寻找适当的“权”,或者说寻找模型中随机干扰项的方差与解释变量间的适当的函数形式。如果发现那么,加权最小二乘法的“权”即为(注意:其中的2完全可以是1)注意:这里的“权”仍然是指用来乘原模型两边的“权”,相当于对原模型的残差ei加权。将这里的权数平方之后,才是对原模型的残差平方ei2加权的权数。当前第33页\共有71页\编于星期四\23点那么,可以用作为权数,去乘原模型的两边,得到下面的模型:补充特别地,如果像教材P111(4.1.4)式那样,近似地有该模型满足同方差性,可以用普通最小二乘法估计:i=1,2,…,n当前第34页\共有71页\编于星期四\23点Eviews软件中的加权最小二乘法(WLS)正是这样设计的:(★)所以,Eviews软件中WLS法的“权”,是指对原模型两边加权的“权”,而不是对原模型的残差平方ei2加权的权数。当前第35页\共有71页\编于星期四\23点3.一般情况(只需了解其思想。第三版已删掉,跳过)对于模型Y=XB+N如果存在

其中

即存在异方差性:Var(i)=2wi(i=1,2,…,n)补充:设A为一个实系数对称矩阵,如果对任何一个非零实向量X,都使二次型X’AX正定(也即大于0),那么A称为正定矩阵。当前第36页\共有71页\编于星期四\23点那么,由于W是一正定矩阵,存在一个可逆矩阵D,使得显然记作该模型具有同方差性:

因为用D-1左乘原模型Y=XB+N两边,可以得到一个新的模型:

当前第37页\共有71页\编于星期四\23点

这就是原模型的加权最小二乘估计量,它是无偏、有效的。于是,可以用普通最小二乘法估计新模型,得到参数估计量,为:

这里权矩阵为D-1,它来自于矩阵W。当前第38页\共有71页\编于星期四\23点4.如何得到权矩阵D-1?

从上述推导过程可以看出,D-1来自于原模型的随机误差项N的方差-协方差矩阵Var-Cov(N)=2W,因此仍然可以对原模型首先采用OLS法,得到随机误差项的近似估计量,以此构造W的估计量,进而得到权矩阵D-1。即(假定2=1,这是完全可以的)当前第39页\共有71页\编于星期四\23点总结:加权最小二乘法的具体步骤(★)注意:用手工加权得到WLS法的结果,即先用GENR命令生成新序列E(残差的绝对值)及YE(即Y/E)、CE(即1/E)、XE(即X/E),然后用OLS法估计,得到WLS法的结果。要求能写出有关的命令格式。当前第40页\共有71页\编于星期四\23点注意

在实际建模过程中,人们通常并不对原模型进行异方差性检验,而是直接选择加权最小二乘法,尤其是采用截面数据作样本时。如果确实存在异方差,则被有效地消除了;

如果不存在异方差,则加权最小二乘法等价于普通最小二乘法。当前第41页\共有71页\编于星期四\23点1.异方差稳健标准误法的基本思想异方差稳健标准误法(heteroscedasticity–robuststandarderror):该方法由怀特(White)于1980年提出,是指先采用普通最小二乘法估计原模型,然后用残差的平方作为相应的随机误差项方差的代表,对参数估计量的方差或标准误差进行修正。见教材P115-116。不要求,从略。(二)异方差稳健标准误法当前第42页\共有71页\编于星期四\23点五、案例—1(补充)

——某地区居民储蓄模型当前第43页\共有71页\编于星期四\23点某地区31年来居民收入与储蓄额数据表当前第44页\共有71页\编于星期四\23点1.普通最小二乘估计直接使用OLS法,得到:

(-5.87)(18.04)R2=0.9182当前第45页\共有71页\编于星期四\23点2.异方差检验(1)图示检验当前第46页\共有71页\编于星期四\23点⑵G-Q检验【这里没有按X排序,是因为X是逐年增大的】①求两个子样本(n1=n2=12)回归方程的残差平方和RSS1与RSS2

;当前第47页\共有71页\编于星期四\23点②计算F统计量F=RSS2/RSS1=769899.2/162899.2=4.726③查表

在5%的显著性水平下,第1和第2自由度均为(31-7)/2-2=10的F分布临界值为

F0.05(10,10)=2.97

由于F=4.726>

F0.05(10,10)=2.97因此,否定两组子样本的方差相同的假设,从而该总体随机误差项存在递增型异方差。当前第48页\共有71页\编于星期四\23点⑶Park检验

显然,lnXi前的参数在统计上是显著的,表明原模型存在异方差。当前第49页\共有71页\编于星期四\23点3.异方差模型的估计当前第50页\共有71页\编于星期四\23点

与OLS估计结果相比较,拟合效果更差。

为什么?

关于异方差形式的假定可能存在问题。当前第51页\共有71页\编于星期四\23点与OLS估计结果相比较,拟合效果更好。当前第52页\共有71页\编于星期四\23点五、案例—2(补充)

——中国消费函数模型当前第53页\共有71页\编于星期四\23点中国消费函数模型(二元回归)根据消费模型的一般形式,选择消费总额为被解释变量,国内生产总值和前一年的消费总额为解释变量,变量之间关系为简单线性关系,选取1981年至1996年统计数据为样本观测值。

当前第54页\共有71页\编于星期四\23点中国消费数据表单位:亿元

当前第55页\共有71页\编于星期四\23点1.OLS估计结果当前第56页\共有71页\编于星期四\23点2.WLS估计结果注:这里的权数E(也可以用别的符号)为OLS估计的残差项的绝对值的倒数。当前第57页\共有71页\编于星期四\23点3.比较R2:0.999739→0.999999F:28682→980736∑e2:438613→29437t:6.422.04.2→25.2134.122.9D.W.:1.45→1.81各项统计检验指标全面改善!当前第58页\共有71页\编于星期四\23点五、案例—3

——中国农村居民人均消费函数模型见第三版教材P116-120例,也是一个非常好的案例(仅仅是把第二版的2001年数据替换成了2006年的数据)。主要的EViews软件输出结果如下:当前第59页\共有71页\编于星期四\23点全样本的OLS回归DependentVariable:LNYMethod:LeastSquaresDate:05/02/11Time:18:07Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C3.2660681.0415913.1356530.0040LNX10.1502140.1085381.3839750.1773LNX20.4774530.0515959.2538530.0000R-squared0.779878Meandependentvar7.928613AdjustedR-squared0.764155S.D.dependentvar0.355750S.E.ofregression0.172766Akaikeinfocriterion-0.581995Sumsquaredresid0.835744Schwarzcriterion-0.443222Loglikelihood12.02092F-statistic49.60117Durbin-Watsonstat1.699959Prob(F-statistic)0.000000软件操作:createu131datayx1x2genrlny=log(y)genrlnx1=log(x1)genrlnx2=log(x2)lslnyclnx1lnx2当前第60页\共有71页\编于星期四\23点怀特检验的软件输出界面:可见,怀特统计量nR2=20.55085【=31×0.662931】,大于自由度【也即辅助回归方程中解释变量的个数】为5的2分布临界值11.07,因此,在5%的显著性水平下拒绝同方差的原假设。在OLS方程对象窗口中,选择view/Residualtest/WhiteHeteroskedasticity。Eviews提供了包含交叉项的怀特异方差检验“WhiteHeteroskedasticity(crossterms)”和没有交叉项的怀特异方差检验“WhiteHeteroskedasticity(nocrossterms)”这样两个选项。当前第61页\共有71页\编于星期四\23点按lnx2排序后,子样本1的OLS回归DependentVariable:LNYMethod:LeastSquaresDate:05/02/11Time:18:08Sample:112Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.C3.1412081.1223582.7987570.0208LNX10.3983850.0787915.0562340.0007LNX20.2347510.1097472.1390090.0611R-squared0.739693Meandependentvar7.700532AdjustedR-squared0.681847S.D.dependentvar0.156574S.E.ofregression0.088316Akaikeinfocriterion-1.803481Sumsquaredresid0.070197Schwarzcriterion-1.682255Loglikelihood13.82089F-statistic12.78726Durbin-Watsonstat1.298449Prob(F-statistic)0.002343按lnx2排序的操作:dataT(用于还原)sortlnx2子样本1的操作:smpl112lslnyclnx1lnx2当前第62页\共有71页\编于星期四\23点按lnx2排序后,子样本2的OLS回归DependentVariable:LNYMethod:LeastSquaresDate:05/02/11Time:18:10Sample:2031Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.C3.9936441.8840542.1197080.0631LNX1-0.1137660.159962-0.7112050.4950LNX20.6201680.1116545.5543800.0004R-squared0.876931Meandependentvar8.239746AdjustedR-squared0.849582S.D.dependentvar0.375812S.E.ofregression0.145754Akaikeinfocriterion-0.801478Sumsquaredresid0.191197Schwarzcriterion-0.680251Loglikelihood7.808868F-statistic32.06485Durbin-Watsonstat2.565362Prob(F-statistic)0.000080子样本2的操作:smpl2031lslnyclnx1lnx2当前第63页\共有71页\编于星期四\23点将数据还原(包括样本区间还原、数据顺序还原),再采用WLS法回归DependentVariable:LNYMethod:LeastSquaresDate:05/02/11Time:18:14Sample:131Includedobservations:31Weightingseries:WVariableCoefficientStd.Errort-StatisticProb.C3.3265760.17357219.165430.0000LNX10.1509450.0248196.0818320.0000LNX20.4678640.00978247.830950.0000WeightedStatisticsR-squared0.999984Meandependentvar7.895881AdjustedR-squared0.999983S.D.dependentvar10.29463S.E.ofregression0.042488Akaikeinfocriterion-3.387401Sumsquaredresid0.050548Schwarzcriterion-3.248628Loglikelihood55.50472F-statistic1325.761Durbin-Watsonstat1.780377Prob(F-statistic)0.000000其中,w=1/abs(resid)数据还原的操作:smpl131sortTWLS的软件操作:lslnyclnx1lnx2genrw=1/abs(resid)然后,用菜单实现WLS当前第64页\共有71页\编于星期四\23点手工加权的回归结果其中,E=abs(resid),LNYE=LNY/E,CE=1/E,LNX1E=LNX1/E,LNX2E=LNX2/EDependentVariable:LNYEMethod:LeastSquaresDate:05/02/11Time:19:18Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.CE3.3265760.17357219.165430.0000LNX1E0.1509450.0248196.0818320.0000LNX2E0.4678640.00978247.830950.0000R-squared0.999984Meandependentvar188.5956AdjustedR-squared0.999983S.D.dependentvar245.8904S.E.ofregression1.014851Akaikeinfocriterion2.959126Sumsquaredresid28.83782Schwa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论