版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市第三十七中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.10名工人生产某一零件,生产的件数分别是10,12,14,14,15,15,16,17,17,17.设其平均数为a,中位数为b,众数为c,则(
)A.a>b>c B.b>c>aC.c>a>b D.c>b>a参考答案:D【分析】分别计算出平均数、中位数和众数,由此得出正确选项.【详解】依题意,.中位数,众数为,故,故选D.【点睛】本小题主要考查样本平均数、中位数和众数的计算,属于基础题.2.已知是等比数列,则公比q=(
)A. B.-2 C.2 D.参考答案:D略3.已知数列,则是它的(
)A.第22项
B.第23项C.第24项
D.第25项参考答案:B略4.函数f(x)=lnx-的零点所在的大致区间是(
)。A.(1,2)
B.(2,3)
C.(1,)和(3,4)
D.(e,+∞)参考答案:B5.要得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位参考答案:A【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】先根据诱导公式化简可得y=sin[2(x+)],再根据左加右减的原则进行平移从而可得到答案.【解答】解:∵=sin(2x+)=sin[2(x+)],∴只需将函数y=sin2x的图象向左平移个单位即可得到函数的图象.故选:A.【点评】本题主要考查两角和与差的公式和三角函数的平移,三角函数平移时一定要遵循左加右减上加下减的原则.6.等差数列的前n项和为,已知,,则(
)A.2014
B.4028
C.0
D.参考答案:A略7.不等式的解集是,则(---)A10
B
C14
D参考答案:D略8.若不等式对一切实数x都成立,则实数a的取值范围为(
)A.或 B.或C. D.参考答案:C【分析】根据题意得出,由此求出的取值范围.【详解】解:显然a=0,不等式不恒成立,所以不等式对一切实数都成立,则,即,解得,所以实数的取值范围是.故选:C.【点睛】本题主要考查了利用判别式解决一元二次不等式恒成立问题,是基础题.9.已知表示两条不同直线,表示两个不同平面,下列说法正确的是(
)A.若,则 B.若,则C.若,,则 D.若,则参考答案:D【分析】由线线,线面,面面的位置关系对选项逐个进行判断即可得到答案.【详解】若m⊥n,n?α,则m⊥α不一定成立,A错;m∥α,m∥β,则α∥β或α,β相交,B错;α∥β,m∥β,则m∥α或m?α,C错;m∥α,由线面平行的性质定理可得过m的平面与α的交线l平行,n⊥α,可得n⊥l,则m⊥n,D对.故选:D.【点睛】本题考查空间线线、线面和面面的位置关系,主要是平行和垂直的判断和性质,考查空间想象能力和推理能力,属于基础题.
10.设P=log23,Q=log32,R=log2(log32),则A.Q<R<P
B.P<R<Q
C.R<Q<P
D.R<P<Q参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知α,β均为锐角,cosα=,cos(α+β)=﹣,则cosβ=.参考答案:【考点】两角和与差的余弦函数.【分析】先利用同角三角函数的基本关系求得sinα和sin(α+β)的值,然后利用cosβ=cos[(α+β)﹣α],根据两角和公式求得答案.【解答】解:∵α,β均为锐角,∴sinα==,sin(α+β)==∴cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.故答案为:12.已知的值为
参考答案:试题分析:考点:同角间三角函数关系13.与的等差中项是
。参考答案:114.函数的定义域为___________________参考答案:略15.幂函数的图象经过点(4,2),那么的值是.参考答案:【考点】幂函数的概念、解析式、定义域、值域.【分析】先设出幂函数解析式来,再通过经过点(4,2),解得参数,从而求得其解析式,再代入求值.【解答】解:设幂函数为:y=xα∵幂函数的图象经过点(4,2),∴2=4α∴α=∴∴=故答案为:16.已知均为单位向量,它们的夹角为,那么_______。参考答案:17.执行如图所示的程序框图,若输入x=10,则输出y的值为______.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知集合A={x2,2x﹣1,﹣4},B={x﹣5,1﹣x,9},C={x|mx=1},且A∩B={9}.(Ⅰ)求A∪B;(Ⅱ)若C?(A∩B),求实数m的值.参考答案:考点: 并集及其运算;集合的包含关系判断及应用;交集及其运算.专题: 规律型.分析: (Ⅰ)利用A∩B={9},解出x,然后利用集合的运算求求A∪B;(Ⅱ)求A∩B,利用C?(A∩B),求实数m的值.解答: (Ⅰ)由A∩B={9}得9∈A,可得x2=9或2x﹣1=9,∴x=±3或x=5当x=3时,A={9,5,﹣4},B={﹣2,﹣2,9},故舍去;当x=﹣3时,A={9,﹣7,﹣4},B={﹣8,4,9},∴A∩B={9}满足题意;当x=5时,A={25,9,﹣4},B={0,﹣4,9},∴A∩B={﹣4,9},不满足题意,故舍去.∴A∪B={﹣8,﹣7,﹣4,4,9}(Ⅱ)∵A∩B={9}.∴当C=?时,得m=0;此时满足C?(A∩B),当C≠?时,C={},此时由,解得;∴.点评: 本题主要考查集合的基本运算以及集合关系的应用,考查分类讨论的思想.19.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)的最大值为2,最小值为﹣,周期为π,且图象过(0,﹣).(1)求函数f(x)的解析式,函数f(x)的单调递增区间.(2)若方程f(x)=a在.参考答案:【考点】H2:正弦函数的图象.【分析】(1)根据三角函数的性质可得A+B=,B﹣A=,求出A,B.周期为π,求出ω,图象过(0,﹣)带入求出φ,可得函数f(x)的解析式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;(2)x∈时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值,即得到f(x)的取值范围.方程f(x)=a看成是函数y=f(x)与y=a有两个交点,可得a的取值范围.以及α,β的关系.即可求出α+β的值.【解答】解:(1)函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)的最大值为2,最小值为﹣,根据三角函数的性质,可得:A+B=,B﹣A=,∴A=,B=.又∵周期为π=,∴ω=2.∴函数f(x)=sin(2x+φ)+.∵图象过(0,﹣),则sinφ=﹣,即φ=,k∈Z.|φ|,∴φ=.则函数f(x)=sin(2x)+.令2x.得:≤x≤,k∈Z.∴函数f(x)的单调递增区间为[≤x≤],k∈Z.(2))x∈时,可得:2x∈[,π].那么sin(2x)∈;∴f(x)∈[,2].方程f(x)=a看成是函数y=f(x)与y=a有两个交点,由三角函数的图象及性质可知:a的取值范围为[,2).两个交点分别为α,β,具有对称性.x=为x∈的一条对称轴.∴2x=,可得对称轴为2x=,即:α+β=.另解:利用特殊点:令2α=0,可得α=,另一个:2β=π,可得β=,那么:α+β=.20.随着互联网的迅速发展,越来越多的消费者开始选择网络购物这种消费方式某营销部门统计了2019年某月锦州的十大特产的网络销售情况得到网民对不同特产的最满意度x(%)和对应的销售额y(万元)数据,如下表:特产种类甲乙丙丁戊已庚辛壬癸最满意度x(%)20342519262019241913销售额y(万元)80898978757165626052
(1)求销量额y关于最满意度x的相关系数r;(2)我们约定:销量额y关于最满意度x的相关系数r的绝对值在0.75以上(含0.75)是线性相关性较强;否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即销售额最少的特产退出销售),并求在剔除“末位淘汰”的特产后的销量额y关于最满意度x的线性回归方程(系数精确到0.1).参考数据:,,,.附:对于一组数据.其回归直线方程的斜率和截距的最小二乘法估计公式分别为:,.线性相关系数参考答案:(1)0.72;(2)【分析】(1)将数据代入相关系数公式可直接求得结果;(2)根据可知需剔除癸种类产品,计算剔除癸种类产品后的数据,利用最小二乘法可求得回归直线.【详解】(1)由相关系数得:(2)
需剔除癸种类产品剔除后的,,,,所求回归方程为:【点睛】本题考查相关系数、回归方程的求解,考查最小二乘法的应用,对于学生的计算和求解能力有一定的要求.21.(14分)在三角形ABC中,角A,B,C对应边分别为a,b,c。求证:。参考答案:(引用正弦定理可证,过程略)
略22.已知全集U=R,集合A={x|1≤x<5},B={x|2≤x≤8},C={x|﹣a<x≤a+3}.(1)求A∪B,(?RA)∩B;(2)若A∩C=C,求a的取值范围.参考答案:【考点】集合的包含关系判断及应用;交、并、补集的混合运算.【分析】(1)直接利用并集、补集
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024楼顶广告牌制作加工合同样本
- 2024棉花收购合同范文
- 2024年安全员职责履行及待遇约定的合同
- 2024年度租赁物维修保养合同服务内容与责任划分
- 2024年度智能穿戴设备采购供应合同
- 2024企业间就市场营销合作合同
- 2024云计算服务提供商股权转让合同
- 2024年体育赛事赞助合同赞助金额与权益分配
- 2024年北京市影视作品制作委托合同
- 2024年企业碳足迹监测与减排合同
- 第九课+发展中国特色社会主义文化+课件高中政治统编必修四哲学与文化
- 牙用漂白凝胶市场环境与对策分析
- 2024年山东省济南市中考英语试题卷(含答案)
- 人教版七年级道德与法治上册 期中复习知识梳理
- 3.1 农业区位因素及其变化 课件 高一地理人教版(2019)必修第二册
- 建筑施工企业(安全管理)安全生产管理人员安全生产考试参考题及答案
- 锅炉应急预案演练方案
- 关于高技能人才培养问题的思考高技能人才培养方案
- 2024新信息科技四年级《第三单元 有趣的编码应用》大单元整体教学设计
- 中国航天发展史主题班会 课件
- 一 《改造我们的学习》(同步练习)解析版
评论
0/150
提交评论