轨迹方程求法及经典例题汇总_第1页
轨迹方程求法及经典例题汇总_第2页
轨迹方程求法及经典例题汇总_第3页
轨迹方程求法及经典例题汇总_第4页
轨迹方程求法及经典例题汇总_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

轨迹方程求法及经典例题汇总轨迹为圆的例题:必修2课本P124B组2:长为2a的线段的两个端点在轴和轴上移动,求线段AB的中点M的轨迹方程:必修2课本P124B组:已知M与两个定点(0,0),A(3,0)的距离之比为,求点M的轨迹方程;(一般地:必修2课本P144B组2:已知点M(,)与两个定点的距离之比为一个常数;讨论点M(,)的轨迹方程(分=1,与1进行讨论)必修2课本P122例5:线段AB的端点B的坐标是(4,3),端点A在圆上运动,求AB的中点M的轨迹。(2013新课标2卷文20)在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为。(1)求圆心的的轨迹方程;(2)若点到直线的距离为,求圆的方程。如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)又|AR|=|PR|=所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=,代入方程x2+y2-4x-10=0,得-10=0整理得:x2+y2=56,这就是所求的轨迹方程.在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.(2013陕西卷理20)已知动圆过定点,且在轴上截得弦的长为8.求动圆圆心的轨迹的方程;已知点,设不垂直于轴的直线与轨迹交于不同的两点,若轴是的角平分线,证明直线过定点。椭圆类型:定义法:(选修2-1P50第3题)点M(,)与定点F(2,0)的距离和它到定直线的距离之比为,求点M的轨迹方程.(圆锥曲线第二定义)讨论:当这个比例常数不是小于1,而是大于1,或等于1是的情形呢?(对应双曲线,抛物线)圆锥曲线第一定义:(选修2-1P50第2题)一个动圆与圆外切,同时与圆内切,求动圆的圆心轨迹方程。圆锥曲线第一定义:点M()圆上的一个动点,点(1,0)为定点。线段的垂直平分线与相交于点Q(,),求点Q的轨迹方程;(注意点(1,0)在圆内)其他形式:(选修2-1P50例3)设点A,B的坐标分别是(-5,0),(5,0),直线AM,BM相交于点M,且他们的斜率的乘积为,求点M的轨迹方程:(是一个椭圆)(讨论当他们的斜率的乘积为时可以得到双曲线)(2013新课标1卷20)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线。(1)求的方程;(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求(2013陕西卷文20)已知动点到直线的距离是它到点的距离的倍。(1)求动点的轨迹的方程(2)过点的直线与轨迹交于两点,若是的中点,求直线的斜率。(1)当P点在椭圆上运动时,求R形成的轨迹方程;(2)设点R形成的曲线为C,直线l:y=k(x+a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值.一、1.解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴动点Q到定点F1的距离等于定长2a,故动点2.解析:设交点P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)∵A1、P1、P共线,∴∵A2、P2、P共线,∴解得x0=二、3.解析:由sinC-sinB=sinA,得c-b=a,∴应为双曲线一支,且实轴长为,故方程为.答案:4.解析:设P(x,y),依题意有,化简得P点轨迹方程为4x2+4y2-85x+100=0.答案:4x2+4y2-85x+100=0三、5.解:设过B、C异于l的两切线分别切⊙O′于D、E两点,两切线交于点P.由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知,点P的轨迹是以B、C为两焦点的椭圆,以l所在的直线为x轴,以BC的中点为原点,建立坐标系,可求得动点P的轨迹方程为=1(y≠0)6.解:设P(x0,y0)(x≠±a),Q(x,y).∵A1(-a,0),A2(a,0).由条件而点P(x0,y0)在双曲线上,∴b2x02-a2y02=a2b2.即b2(-x2)-a2()2=a2b2化简得Q点的轨迹方程为:a2x2-b2y2=a4(x≠±a).8.解:(1)∵点F2关于l的对称点为Q,连接PQ,∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2|又因为l为∠F1PF2外角的平分线,故点F1、P、Q在同一直线上,设存在R(x0,y0),Q(x1,y1),F1(-c,0),F2(c,0).|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,则(x1+c)2+y12=(2a)又得x1=2x0-c,y1=2y0.∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2故R的轨迹方程为:x2+y2=a2(y≠0)(2)如右图,∵S△AOB=|OA|·|OB|·sinAOB=sinAOB当∠AOB=90°时,S△AOB最大值为a2.此时弦心距|OC|=.在Rt△AOC中,∠AOC=45°,专题一:求曲线的轨迹方程课前自主练习:1.如图1,中,已知,,点在轴上方运动,且,则顶点的轨迹方程是.图1图2图3图42.如图2,若圆:上的动点与点连线的垂直平分线交于点,图1图2图3图4则的轨迹方程是.3.如图3,已知点,点在圆上运动,的平分线交于,则的轨迹方程是.4.与双曲线有共同的渐近线,且经过点的双曲线方程为.5.如图4,垂直于轴的直线与轴及抛物线分别交于点、,点在轴上,且点满足,则线段的中点的轨迹方程是.几种常见求轨迹方程的方法:1.直接法:由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.直接法求轨迹方程的一般步骤:建系——设点——列式——代换——化简——检验;【例1】(1)求和定圆的圆周的距离等于的动点的轨迹方程;(2)过点作圆:的割线,求割线被圆截得弦的中点的轨迹.解:(1)设动点,则有或.即或.故所求动点的轨迹方程为或.(2)设弦的中点为,连结,则.∵,∴,化简得:.其轨迹是以为直径的圆在圆内的一段弧(不含端点).【例2】已知直角坐标平面上一点和圆:,动点到圆的切线长等于圆的半径与的和.求动点的轨迹方程,并说明它表示什么曲线.解:如图,设切圆于,又圆的半径,∴,∴,由已知.设,则,∴,即.可化为.故所求的轨迹是以点为中心,实轴在轴上的双曲线的右支,顶点为,如图.【例4】已知定圆的半径为,定点与圆的圆心的距离为.又一动圆过定点,且与定圆相切.求动圆圆心的轨迹方程.解:以所在的直线为轴,以的中点为原点建立坐标系,如图.当动圆与定圆外切时,;当动圆与定圆外切时,.由双曲线的定义知动圆圆心的轨迹应是以、为两焦点的双曲线(外切时为右支,内切时为左支).显然,,又,故.所以所求的点轨迹方程是:.3.动点转移法:若动点随已知曲线上的点的变动而变动,且、可用、表示,则将点坐标表达式代入已知曲线方程,即得点的轨迹方程.这种方法称为动点转移法(或代换法或相关点法).【例5】已知定点、为抛物线,上任意一点,点在线段的中点,当点在抛物线上变动时,求点的轨迹方程.解:设点,且设点,则有.∵点是线段的中点.由中点坐标公式得:,∴.将此式代入中,并整理得:,即为所求轨迹方程.它是一条抛物线.4.待定系数法:当动点的轨迹是确定的某种曲线时,设出这种曲线的方程,然后列方程,求出所设的参数,进而求出方程.如求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.【例7】若抛物线和以坐标轴为对称轴、实轴在轴上的双曲线仅有两个公共点,又直线被双曲线截得的线段长等于,求此双曲线方程.解:设所求双曲线方程为,将代入整理得:.∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程应有等根.∴,即.由和得:.由弦长公式得:.即.由得:,.∴双曲线的方程是.5.参数法:当动点的坐标、之间的直接关系不易建立时,可适当地选取中间变量,并用表示动点的坐标、,从而动点轨迹的参数方程消去参数,便可得到动点的的轨迹的普通方程,但要注意方程的等价性,即有的范围确定出、的范围.【例8】抛物线的焦点为,过点作直线交抛物线于不同两点、,以、为邻边作平行四边形,求顶点的轨迹方程.解:设,:,中点为,,,与联立得:.,,.,.,∵,为中点,∴,.消得:.巩固练习:1.平面上和两相交的定圆(半径不等)同时相外切的动圆圆心的轨为()(A)椭圆的一部分(B)椭圆(C)双曲线的一部分(D)双曲线2.已知动点与定点的距离比动点到轴的距离大,则动点的轨迹()(A)抛物线(B)抛物线的一部分(C)抛物线和一射线(D)抛物线和一直线3.已知定直线和外一点,过与相切的圆的圆心轨迹是()(A)抛物线(B)双曲线(C)椭圆(D)直线4.一动圆与两圆和都外切,则动圆圆心轨迹为()(A)圆(B)椭圆(C)双曲线的一支(D)抛物线5.已知椭圆的焦点是、、是椭圆上的一个动点.如果延长到,使得,那么动点的轨迹是()(A)圆(B)椭圆(C)双曲线的一支(D)抛物线6.已知点、,动点满足,则点的轨迹是()(A)圆(B)椭圆(C)双曲线(D)抛物线7.与圆外切,又与轴相切的圆的圆心的轨迹方程是()(A)(B)和(C)(D)和8.过抛物线的焦点作直线与此抛物线相交于两点、,则线段中点的轨迹方程为()(A)(B)(C)(D)9.过点的直线分别与轴的正半轴和轴的正半轴交于A、B两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()(A)(B)(C)(D)10.已知两点、,点为坐标平面内的动点,满足,则动点的轨迹方程为()(A)(B)(C)(D)11.与双曲线有共同的渐近线,且经过点的双曲线方程是()(A)(B)(C)(D)12.设为双曲线上一动点,为坐标原点,为线段的中点,则点的轨迹方程是.13.已知,是圆:(为圆心)上一动点,线段的垂直平分线交于,则动点的轨迹方程为.14.倾斜角为的直线交椭圆于、两点,则线段中点的轨迹方程是.15.求焦点在坐标轴上,中心在原点且经过和两点的椭圆方程.16.已知双曲线与椭圆共焦点,它的一条渐近线方程为,则双曲线的方程是.17.已知是椭圆上的任意一点,从右焦点作的外角平分线的垂线,垂足为,求点的轨迹方程.18.如图,直线:与直线:之间的阴影区域(不含边界)记为,其左半部分记为,右半部分记为.(1)分别用不等式组表示和;(2)若区域中的动点到,的距离之积等于,求点的轨迹的方程;19.设椭圆方程为,过点的直线l交椭圆于点A、B,O是坐标原点,点P满足,当l绕点M旋转时,求动点P的轨迹方程.20.过双曲线:的左焦点作直线与双曲线交于、两点,以线段、为邻边作平行四边形,求顶点的轨迹方程.21.设点和为抛物线上原点以外的两个动点,已知,,求点的轨迹方程,并说明它表示什么曲线.(一)求轨迹方程的一般方法:1.定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。2.直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。3.参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。4.代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。一:用定义法求轨迹方程例1:已知的顶点A,B的坐标分别为(-4,0),(4,0),C为动点,且满足求点C的轨迹。【变式】:已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。二:用直译法求轨迹方程此类问题重在寻找数量关系。例2:一条线段两个端点A和B分别在x轴和y轴上滑动,且BM=a,AM=b,求AB中点M的轨迹方程?【变式】:动点P(x,y)到两定点A(-3,0)和B(3,0)的距离的比等于2(即),求动点P的轨迹方程?三:用参数法求轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的取值范围。例3.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程。四:用代入法求轨迹方程例4.轨迹方程。【变式】如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程五、用交轨法求轨迹方程例5.已知椭圆(a>b>o)的两个顶点为,,与y轴平行的直线交椭圆于P1、P2,求A1P1与A2P2交点M的轨迹方程.六、用点差法求轨迹方程例6.已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;练习1.在中,B,C坐标分别为(-3,0),(3,0),且三角形周长为16,则点A的轨迹方程是_______________________________.2.两条直线与的交点的轨迹方程是__________.3.已知圆的方程为(x-1)2+y2=1,过原点O作圆的弦0A,则弦的中点M的轨迹方程是_____4.当参数m随意变化时,则抛物线的顶点的轨迹方程为______。5:点M到点F(4,0)的距离比它到直线的距离小1,则点M的轨迹方程为________。6:求与两定点距离的比为1:2的点的轨迹方程为_____________7.抛物线的通径(过焦点且垂直于对称轴的弦)与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。8.已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程。9.过原点作直线l和抛物线交于A、B两点,求线段AB的中点M的轨迹方程。高二(上)求轨迹方程的常用方法答案例1:已知的顶点A,B的坐标分别为(-4,0),(4,0),C为动点,且满足求点C的轨迹。【解析】由可知,即,满足椭圆的定义。令椭圆方程为,则,则轨迹方程为(,图形为椭圆(不含左,右顶点)。【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。圆:到定点的距离等于定长椭圆:到两定点的距离之和为常数(大于两定点的距离)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)到定点与定直线距离相等。【变式1】:1:已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。解:设动圆的半径为R,由两圆外切的条件可得:,。。∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。故所求轨迹方程为2:一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支【解答】令动圆半径为R,则有,则|MO|-|MC|=2,满足双曲线定义。故选D。二:用直译法求曲线轨迹方程此类问题重在寻找数量关系。例2:一条线段AB的长等于2a,两个端点A和B分别在x轴和y轴上滑动,求AB中点P解设M点的坐标为由平几的中线定理:在直角三角形AOB中,OM=M点的轨迹是以O为圆心,a为半径的圆周.【点评】此题中找到了OM=这一等量关系是此题成功的关键所在。一般直译法有下列几种情况:1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.【变式2】:动点P(x,y)到两定点A(-3,0)和B(3,0)的距离的比等于2(即),求动点P的轨迹方程?【解答】∵|PA|=代入得化简得(x-5)2+y2=16,轨迹是以(5,0)为圆心,4为半径的圆.三:用参数法求曲线轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的取值范围。例3.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程。【解析】分析1:从运动的角度观察发现,点M的运动是由直线l1引发的,可设出l1的斜率k作为参数,建立动点M坐标(x,y)满足的参数方程。解法1:设M(x,y),设直线l1的方程为y-4=k(x-2),(k≠0)∵M为AB的中点,消去k,得x+2y-5=0。另外,当k=0时,AB中点为M(1,2),满足上述轨迹方程;当k不存在时,AB中点为M(1,2),也满足上述轨迹方程。综上所述,M的轨迹方程为x+2y-5=0。分析2:解法1中在利用k1k2=-1时,需注意k1、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用△PAB为直角三角形的几何特性:解法2:设M(x,y),连结MP,则A(2x,0),B(0,2y),∵l1⊥l2,∴△PAB为直角三角形化简,得x+2y-5=0,此即M的轨迹方程。分析3::设M(x,y),由已知l1⊥l2,联想到两直线垂直的充要条件:k1k2=-1,即可列出轨迹方程,关键是如何用M点坐标表示A、B两点坐标。事实上,由M为AB的中点,易找出它们的坐标之间的联系。解法3:设M(x,y),∵M为AB中点,∴A(2x,0),B(0,2y)。又l1,l2过点P(2,4),且l1⊥l2∴PA⊥PB,从而kPA·kPB=-1,注意到l1⊥x轴时,l2⊥y轴,此时A(2,0),B(0,4)中点M(1,2),经检验,它也满足方程x+2y-5=0综上可知,点M的轨迹方程为x+2y-5=0。【点评】解法1用了参数法,消参时应注意取值范围。解法2,3为直译法,运用了kPA·kPB=-1,这些等量关系。。用参数法求解时,一般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横,纵坐标等。也可以没有具体的意义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O:x2+y2=4外一点A(4,0),作圆的割线,求割线被圆截得的弦BC的中点M的轨迹。解法一:“几何法”设点M的坐标为(x,y),因为点M是弦BC的中点,所以OM⊥BC,所以|OM|2+|MA|2=|OA|2,

即(x2+y2)+(x-4)2+y2=16化简得:(x-2)2+y2=4................................①由方程①与方程x2+y2=4得两圆的交点的横坐标为1,所以点M的轨迹方程为(x-2)2+y2=4(0≤x<1)。所以M的轨迹是以(2,0)为圆心,2为半径的圆在圆O内的部分。解法二:“参数法”设点M的坐标为(x,y),B(x1,y1),C(x2,y2)直线AB的方程为y=k(x-4),由直线与圆的方程得(1+k2)x2-8k2x+16k2-4=0...........(*),由点M为BC的中点,所以x=...............(1),又OM⊥BC,所以k=.................(2)由方程(1)(2)消去k得(x-2)2+y2=4,又由方程(*)的△≥0得k2

≤,所以x<1.所以点M的轨迹方程为(x-2)2+y2=4(0≤x<1)所以M的轨迹是以(2,0)为圆心,2为半径的圆在圆O内的部分。四:用代入法等其它方法求轨迹方程例4.轨迹方程。分析:题中涉及了三个点A、B、M,其中A为定点,而B、M为动点,且点B的运动是有规律的,显然M的运动是由B的运动而引发的,可见M、B为相关点,故采用相关点法求动点M的轨迹方程。【解析】设动点M的坐标为(x,y),而设B点坐标为(x0,y0)则由M为线段AB中点,可得即点B坐标可表为(2x-2a,2y)【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式4】如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程【解析】:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|又因为R是弦AB的中点,依垂径定理在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)又|AR|=|PR|=所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=,代入方程x2+y2-4x-10=0,得-10=0整理得x2+y2=56,这就是所求的轨迹方程五、用交轨法求轨迹方程六、用点差法求轨迹方程分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为,,线段的中点,则①-②得.由题意知,则上式两端同除以,有,将③④代入得.⑤(1)将,代入⑤,得,故所求直线方程为:.⑥将⑥代入椭圆方程得,符合题意,为所求.(2)将代入⑤得所求轨迹方程为:.(椭圆内部分)(3)将代入⑤得所求轨迹方程为:.(椭圆内部分)练习1【正确解答】ABC为三角形,故A,B,C不能三点共线。轨迹方程里应除去点,即轨迹方程为2.两条直线与的交点的轨迹方程是.【解答】:直接消去参数即得(交轨法):3:已知圆的方程为(x-1)2+y2=1,过原点O作圆的弦0A,则弦的中点M的轨迹方程是.【解答】:令M点的坐标为(,则A的坐标为(2,代入圆的方程里面得:4:当参数m随意变化时,则抛物线的顶点的轨迹方程为【分析】:把所求轨迹上的动点坐标x,y分别用已有的参数m来表示,然后消去参数m,便可得到动点的轨迹方程。【解答】:抛物线方程可化为它的顶点坐标为消去参数m得:故所求动点的轨迹方程为。5:点M到点F(4,0)的距离比它到直线的距离小1,则点M的轨迹方程为【分析】:点M到点F(4,0)的距离比它到直线的距离小1,意味着点M到点F(4,0)的距离与它到直线的距离相等。由抛物线标准方程可写出点M的轨迹方程。【解答】:依题意,点M到点F(4,0)的距离与它到直线的距离相等。则点M的轨迹是以F(4,0)为焦点、为准线的抛物线。故所求轨迹方程为。6:求与两定点距离的比为1:2的点的轨迹方程为_________【分析】:设动点为P,由题意,则依照点P在运动中所遵循的条件,可列出等量关系式。【解答】:设是所求轨迹上一点,依题意得由两点间距离公式得:化简得:7抛物线的通径(过焦点且垂直于对称轴的弦)与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。【分析】:抛物线的焦点为。设△ABC重心P的坐标为,点C的坐标为。其中【解答】:因点是重心,则由分点坐标公式得:即由点在抛物线上,得:将代入并化简,得:(9.已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程。【解答】:设点P的坐标为(x,y),则由题意可得。(1)当x≤3时,方程变为,化简得。(2)当x>3时,方程变为,化简得。故所求的点P的轨迹方程是或10.过原点作直线l和抛物线交于A、B两点,求线段AB的中点M的轨迹方程。【解答】:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。把它代入抛物线方程,得。因为直线和抛物线相交,所以△>0,解得。设A(),B(),M(x,y),由韦达定理得。由消去k得。又,所以。∴点M的轨迹方程为。【基础练习】1.到两坐标轴的距离相等的动点的轨迹方程是()A.B.C.D.2.已知点的坐标满足,则动点P的轨迹是()A.椭圆B.双曲线C.两条射线D.以上都不对3.设定点、,动点满足条件,则点P的轨迹()A.椭圆B.线段C.不存在D.椭圆或线段4.动点P与定点、的连线的斜率之积为,则点的轨迹方程为______________.【例题精选】直接法求曲线方程根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。即把这种关系“翻译”成含x,y的等式就得到曲线的轨迹方程了。例1.已知中,,试求点的轨迹方程,并说明轨迹是什么图形.练习:已知两点M(-1,0)、N(1,0),且点P使,,成公差小于零的等差数列。点P的轨迹是什么曲线?二定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。例1.⊙C:内部一点与圆周上动点Q连线AQ的中垂线交CQ于P,求点P的轨迹方程.例2.设动点到定点的距离比它到y轴的距离大。记点P的轨迹为曲线C求点P的轨迹方程;练习.若动圆与圆相外切,且与直线相切,则动圆圆心轨迹方程是.三代入法有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。如果相关点所满足的条件是明显的,或是可分析,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法。这种方法是一种极常用的方法,连续好几年高考都考查。例1、已知定点A(3,0),P是圆x2+y2=1上的动点,∠AOP的平分线交AP于M,求M点的轨迹。例2、如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.针对练习一、客观题1.平面内到点、距离之和为的点的轨迹为()A.椭圆B.一条射线C.两条射线D.一条线段2.平面上动点到定点的距离比到轴的距离大,则动点的轨迹方程为()A.B.C.或D.或3.已知抛物线的方程为,且抛物线上各点与焦点距离的最小值为2,若点M在此抛物线上运动,点N与点M关于点A(1,1)对称,则点N的轨迹方程为()A. B.C. D.4.动点P在抛物线上移动,则点P与点连线中点M轨迹方程是_____________.5.一动点P到点F(2,0)的距离比它到y轴的距离大2,则点P的轨迹方程是.二、解答题 6.动圆M过定点P(-4,0),且与圆C:x2+y2-8x=0相切,求动圆圆心M的轨迹方程。、、、7.已知抛物线=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.8.已知数列{an}的前n项和为Sn,点在直线上,数列{bn}满足,b3=11,且{bn}的前9项和为153.(1)求数列{an}和{bn}的通项公式;(2)设,记数列{cn}的前n项和为Tn,求使不等式对一切n∈N*都成立的最大正整数k的值.19.(本题满分14分)已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足,设P为弦AB的中点。(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.20、(本题满分14分)过点作直线交圆M:于点B、C,在BC上取一点P,使P点满足:,(1)求点P的轨迹方程;(2)若(1)的轨迹交圆M于点R、S,求面积的最大值。一、知识概要:1.定义法:若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。2.直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。即把这种关系“翻译”成含x,y的等式就得到曲线的轨迹方程了。二、基本训练:1、已知ABC的一边BC的长为6,周长为16,则顶点A的轨迹是什么?答:.2、若,则点M的轨迹方程是.(注意区别轨迹与轨迹方程两概念)三、例题:例1、两根杆分别绕着定点A和B(AB=2a)在平面内转动,并且转动时两杆保持相互垂直求两杆交点的轨迹方程.

例3、过点,作直线l交双曲线于A、B不同两点,已知。(1)、求点P的轨迹方程,并说明轨迹是什么曲线。(2)、是否存在这样的直线,使若存在,求出l的方程;若不存在,说明理由。解:(1)、设直线l的方程为,代入得,当时,设,,则,设,由,则,解之得再将代入得……(1)当时,满足(1)式;当斜率不存在是,易知满足(1)式,故所求轨迹方程为,其轨迹为双曲线;当时,l与双曲线只有一个交点,不满足题意。(2),所以平行四边形OAPB为矩形,OAPB为矩形的充要条件是,即。当不存在时,A、B坐标分别为,,不满足上式。又化简得:,此方程无实数解,故不存直线l使OAPB为矩形。点评:平面向量和平面解析几何是新老教材的结合点,也是近几年高考常考查的热点,解此类题应注重从向量积的定义和向量的加减法的运算入手,还应该尽量联系向量与解析几何的共同点,综合运用解析几何知识和技巧,使问题有效解决。

课外作业:1.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A.圆 B.椭圆 C.双曲线的一支 D.抛物线2.如图,已知圆B:(x+1)2+y2=16及点A(1,0),C为圆B上任意一点,则线段AC的垂直平分l与线段CB的交点P的轨迹方程是.3.已知,A(3,0),B(-3,0),且三边长|AC|、|AB|、|BC|依次成等差数列,则顶点C的轨迹方程是.6*.△ABC中,A为动点,B、C为定点,B(-,0),C(,0),且满足条件sinC-sinB=sinA,则动点A的轨迹方程为.

8.(06全国Ⅰ)在平面直角坐标系xoy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x,y轴的交点分别为A、B,且向量。求点M的轨迹方程.9.如图,过A(-1,0),斜率为k的直线l与抛物线C:交于P、Q两点,若曲线C的焦点F与P、Q、R三点按图中顺序构成平行四边形,求点R的轨迹方程。

一、知识概要:代入法(相关点法)有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。如果相关点所满足的条件是明显的,或是可分析,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法。这种方法是一种极常用的方法,连续好几年高考都考查。二、基本训练:1、双曲线有动点P,F1,F2是曲线的两个焦点,求△PF1F2的重心M的轨迹方程。例2、已知定点A(3,0),P是圆x2+y2=1上的动点,∠AOP的平分线交AP于M,求M点的轨迹。解:如图,设M(x,y)、P(x1,y1)。由于OM平分∠AOP,故M分AP的比为:λ==3由定比分点公式,得,即,由于x12+y12=1,故,即。故所求轨迹是以为圆心,以为半径的圆。例3、如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.错解分析:欲求Q的轨迹方程,应先求R的轨迹方程,若学生思考不深刻,发现不了问题的实质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论