版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章药物微粒分散系的基础理论演示文稿当前第1页\共有44页\编于星期三\9点优选第四章药物微粒分散系的基础理论当前第2页\共有44页\编于星期三\9点微粒分散体系的特殊性能:①粒径更小的分散体系(胶体分散体系)还具有明显的布朗运动、丁铎尔现象、电泳等性质,②微粒分散体系首先是多相体系,分散相与分散介质之间存在着相界面,因而会出现大量的表面现象;③随分散相微粒直径的减少,微粒比表面积显著增大,使微粒具有相对较高的表面自由能,所以它是热力学不稳定体系,因此,微粒分散体系具有容易絮凝、聚结、沉降的趋势。当前第3页\共有44页\编于星期三\9点微粒分散体系在药剂学的重要意义:①由于粒径小,有助于提高药物的溶解速度及溶解度,有利于提高难溶性药物的生物利用度;②有利于提高药物微粒在分散介质中的分散性与稳定性;③具有不同大小的微粒分散体系在体内分布上具有一定的选择性,如一定大小的微粒给药后容易被单核吞噬细胞系统吞噬;④微囊、微球等微粒分散体系一般具有明显的缓释作用,可以延长药物在体内的作用时间,减少剂量,降低毒副作用;⑤还可以改善药物在体内外的稳定性。当前第4页\共有44页\编于星期三\9点微粒大小与测定方法单分散体系:微粒大小完全均一的体系;多分散体系:微粒大小不均一的体系。绝大多数微粒分散体系为多分散体系。常用平均粒径来描述粒子大小。常用的粒径表示方法:几何学粒径、比表面粒径、有效粒径等。微粒大小的测定方法:光学显微镜法、电子显微镜法、激光散射法、库尔特计数法、Stokes沉降法、吸附法等。当前第5页\共有44页\编于星期三\9点微粒大小是微粒分散系的重要参数测定方法:光学显微镜法:0.5μm~电子显微镜法:0.001μm~激光散射法:0.02μm~库尔特计数法:1~600μmStokes沉降法:0.5~200μm吸附法:0.03~1μm当前第6页\共有44页\编于星期三\9点1.电子显微镜法扫描电子显微镜(SEM):二次电子、背景散射电子共同用于扫描电镜的成像。特点:立体感强,制样简单,样品的电子损失小等特点。在观察形态方面效果良好,常用于研究高分子材料的制剂,如微球等。当前第7页\共有44页\编于星期三\9点1.电子显微镜法透射电子显微镜(TME)是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。放大倍数为几万~百万倍。特点:常用于介质中微粒的研究。如脂质体等。当前第8页\共有44页\编于星期三\9点当前第9页\共有44页\编于星期三\9点
电子显微镜法的测定原理电子束射到样品上,如果能量足够大就能穿过样品而无相互作用,形成透射电子,用于透射电镜(TEM)的成像和衍射;当入射电子穿透到离核很近的地方被反射,而没有能量损失,则在任何方向都有散射,即形成背景散射;如果入射电子撞击样品表面原子外层电子,把它激发出来,就形成低能量的二次电子,在电场作用下可呈曲线运动,翻越障碍进入检测器,使表面凸凹的各个部分都能清晰成像。二次电子和背景散射电子共同用于扫描电镜(SEM)的成像。
当前第10页\共有44页\编于星期三\9点微球表面形态
ScanningelectronmicrographyofADM-GMS
微球橙红色,形态圆整、均匀,微球表面可见孔隙,部分微球表面有药物或载体材料结晶。当前第11页\共有44页\编于星期三\9点2.激光散射法散射光强度与粒子体积V的平方成正比,利用这一特性可以测定粒子大小及分布。当前第12页\共有44页\编于星期三\9点对于溶液,散射光强度、散射角大小与溶液的性质、溶质分子量、分子尺寸及分子形态、入射光的波长等有关,对于直径很小的微粒,雷利散射公式:
I-散射光强度;I0-入射光的强度;n-分散相折射率;n0-分散介质折射率;λ-入射光波长;V-单个粒子体积;υ-单位体积溶液中粒子数目。由上式,散射光强度与粒子体积V的平方成正比,利用这一特性可测定粒子大小及分布。当前第13页\共有44页\编于星期三\9点第二节微粒分散系的物理化学性质布朗运动是微粒扩散的微观基础,而扩散现象又是布朗运动的宏观表现。布朗运动使很小的微粒具有了动力学稳定性。一、微粒分散体系的动力学性质当前第14页\共有44页\编于星期三\9点布朗运动是液体分子热运动撞击微粒的结果。布朗运动是微粒扩散的微观基础,而扩散现象又是布朗运动的宏观表现。布朗运动使很小的微粒具有了动力学稳定性。微粒运动的平均位移Δ可用布朗运动方程表示:(一)Brown运动r愈小,介质粘度愈小,温度愈高,粒子的平均位移愈大,布朗运动愈明显。t-时间;T-热力学温度;η-介质粘度;r-微粒半径;NA-介质微粒数目当前第15页\共有44页\编于星期三\9点布朗运动:粒子永不停息的无规则的直线运动布朗运动是粒子在每一瞬间受介质分子碰撞的合力方向不断改变的结果。由于胶粒不停运动,从其周围分子不断获得动能,从而可抗衡重力作用而不发生聚沉。当前第16页\共有44页\编于星期三\9点粒径较大的微粒受重力作用,静置时会自然沉降,其沉降速度服从Stoke’s定律:
V-微粒沉降速度;r-微粒半径;ρ1、ρ2-分别为微粒和分散介质密度;-分散介质粘度;g-重力加速度常数。
(三)沉降与沉降平衡r愈大,微粒和分散介质的密度差愈大,分散介质的粘度愈小,粒子的沉降速度愈大。当前第17页\共有44页\编于星期三\9点当一束光照射到微粒分散系时,可以出现光的吸收、反射和散射等。光的吸收主要由微粒的化学组成与结构所决定;而光的反射与散射主要取决于微粒的大小。当一束光线在暗室通过胶粒分散系,在其侧面可看到明显的乳光,即Tyndall现象。丁铎尔现象是微粒散射光的宏观表现。低分子溶液—透射光;粗分散体系—反射光;胶体分散系—散射光。三、微粒分散系的光学性质当前第18页\共有44页\编于星期三\9点
丁达尔现象丁达尔现象(Tyndallphenomena)在暗室中,将一束光通过溶胶时,在侧面可看到一个发亮的光柱,称为乳光,即丁达尔(Tyndall)现象。当前第19页\共有44页\编于星期三\9点(一)电泳在电场的作用下微粒发生定向移动——电泳(electronphoresis).微粒在电场作用下移动速度与粒径大小成反比,微粒越小,移动越快。(二)微粒的双电层结构在微粒分散系溶液中,微粒表面的离子与近表面的反离子构成吸附层;同时由于扩散作用,反离子在微粒周围呈现渐远渐稀的梯度分布扩散层,吸附层与扩散层所带电荷相反,共同构成双电层结构。四、微粒分散系的电学性质当前第20页\共有44页\编于星期三\9点(一)电泳在电场的作用下微粒发生定向移动——电泳(electronphoresis).微粒在电场作用下移动的速度与其粒径大小成反比,其他条件相同时,微粒越小,移动越快。(二)微粒的双电层结构在微粒分散体系的溶液中,微粒表面的离子与靠近表面的反离子构成了微粒的吸附层;同时由于扩散作用,反离子在微粒周围呈现距微粒表面越远则浓度越稀的梯度分布形成微粒的扩散层,吸附层与扩散层所带电荷相反。微粒的吸附层与相邻的扩散层共同构成微粒的双电层结构。三、微粒的电学性质从吸附层表面至反离子电荷为零处的电位差叫动电位,即ζ电位。ζ电位与微粒的物理稳定性关系密切。ζ=σε/r在相同的条件下,微粒越小,ζ电位越高。当前第21页\共有44页\编于星期三\9点微粒的双电层结构吸附层:微粒表面→切动面由定位离子+反离子+溶剂分子组成。扩散层:切动面→电势为零由反离子组成。ζ电位:切动面→电势为零处的电位差,也叫动电位。ζ电位是衡量胶粒带电荷多少的指标。微粒表面切动面吸附层扩散层ψ
xζ当前第22页\共有44页\编于星期三\9点斯特恩吸附扩散双电层
双电层分为吸附层和扩散层。吸附层由定位离子和反离子组成。定位离子决定表面电荷符号和表面电势大小,反离子排列在定位离子附近。反离子中心称为斯特恩面,从斯特恩面到粒子表面之间为斯特恩层。该层ψ0直线下降到ψd
。斯特恩层外有一切动面,该处电势即ζ电势,它是衡量胶粒带电荷多少的指标。当一些大的反离子进入紧密层,则可能使ψd反号。
Stern面切动面斯特恩层ψo
Ψdζx当前第23页\共有44页\编于星期三\9点第三节微粒分散体系的物理稳定性微粒分散体系的物理稳定性直接关系到微粒给药系统的应用。在宏观上,微粒分散体系的物理稳定性可表现为微粒粒径的变化,微粒的絮凝、聚结、沉降、乳析和分层等等。当前第24页\共有44页\编于星期三\9点热力学稳定性微粒分散体系是多相分散体系,存在大量界面,当微粒变小时,其表面积A增加,表面自由能的增加△G:
△G=σ△A当△A时△G体系稳定性为了降低△G微粒聚结σ△G体系稳定性选择适当的表面活性剂、稳定剂、增加介质粘度等当前第25页\共有44页\编于星期三\9点动力学稳定性主要表现在两个方面:1.布朗运动提高微粒分散体系的物理稳定性2.重力产生的沉降使微粒分散体系的物理稳定性下降当前第26页\共有44页\编于星期三\9点微粒表面的电学特性也会影响微粒分散体系的物理稳定性。扩散双电层的存在,使微粒表面带有同种电荷,在一定条件下因互相排斥而稳定。双电层厚度越大,微粒越稳定。体系中加入一定量的某种电解质,使微粒的物理稳定性下降,出现絮凝状态。反絮凝过程可使微粒表面的ζ电位升高。一、絮凝与反絮凝当前第27页\共有44页\编于星期三\9点二、DLVO理论DLVO理论是关于微粒稳定性的理论。(一)微粒间的VanderWaals吸引能(ΦA)(二)双电层的排斥作用能(ΦR)(三)微粒间总相互作用能(ΦT)(四)临界聚沉浓度当前第28页\共有44页\编于星期三\9点(一)微粒间的VanderWaals吸引能分子之间的VanderWaals作用,涉及偶极子的长程相互作用:①两个永久偶极之间的相互作用;②永久偶极与诱导偶极间的相互作用;③诱导偶极之间的色散相互作用。除了少数的极性分子,色散相互作用在三类作用中占支配地位。此三种相互作用全系负值,即表现为吸引,其大小与分子间距离的六次方成反比。当前第29页\共有44页\编于星期三\9点Hamaker假设:微粒间的相互作用等于组成它们的各分子之间的相互作用的加和。对于两个彼此平行的平板微粒,得出单位面积上相互作用能ΦA:ΦA=-A/12πD2对于同一物质,半径为a的两个球形微粒之间的相互作用能为:
ΦA=-Aa/12H
同物质微粒间的VanderWaals作用永远是相互吸引,介质的存在能减弱吸引作用,而且介质与微粒的性质越接近,微粒间的相互吸引就越弱。(一)微粒间的VanderWaals吸引能当前第30页\共有44页\编于星期三\9点(二)双电层的排斥作用能当微粒接近到它们的双电层发生重叠,并改变了双电层电势与电荷分布时,才产生排斥作用。微粒的双电层因重叠而产生排斥作用是DLVO理论的核心。计算双电层排斥作用的最简便方法是采用Langmuir的方法。ΦR=64πaη0
kTxr20exH当前第31页\共有44页\编于星期三\9点微粒间总相互作用能:ΦT=
ΦA+ΦR以ΦT对微粒间距离H作图,即得总势能曲线。(三)微粒间总相互作用能ΦT+-第一级小第二级小h微粒的物理稳定性取决于总势能曲线上势垒的大小。当前第32页\共有44页\编于星期三\9点总势能曲线上的势垒的高度随溶液中电解质浓度的加大而降低,当电解质浓度达到某一数值时,势能曲线的最高点恰好为零,势垒消失,体系由稳定转为聚沉,这就是临界聚沉状态,这时的电解质浓度即为该微粒分散体系的聚沉值。将在第一极小处发生的聚结称为聚沉(coagulation),将在第二极小处发生的聚结叫絮凝(flocculation)。(四)临界聚沉浓度当前第33页\共有44页\编于星期三\9点三、空间稳定理论微粒表面上吸附的大分子从空间阻碍了微粒相互接近,进而阻碍了它们的聚结,这类稳定作用为空间稳定作用。一般用高分子作为稳定剂。实验规律1.分子稳定剂的结构特点:高分子应于微粒有很强的亲和力,同时应与溶剂具有良好的亲和性。2.高分子的浓度与分子量的影响:通常,分子量越大,高分子在微粒表面上形成的吸附层越厚,稳定效果越好。高分子低于临界分子量时,无保护作用(敏化作用)。3.溶剂的影响:高分子在良溶剂中链段能伸展,吸附层变厚,稳定作用增强。在不良溶剂中,高分子的稳定作用变差。温度的改变可改变溶剂对高分子的性能。当前第34页\共有44页\编于星期三\9点1.两种稳定理论三、空间稳定理论(二)理论基础体积限制效应理论混合效应理论当前第35页\共有44页\编于星期三\9点2.微粒稳定性的判断:ΔGR=ΔHR-TΔSR
若使胶粒稳定,则ΔGR>0,有如下三种情况:①ΔHR,ΔSR>0,但ΔHR>TΔSR,焓变起稳定作用,熵变则反之,加热会使体系不稳定,容易聚沉:②ΔHR,ΔSR<0,但|ΔHR|<
|TΔSR|,熵起稳定作用,加热时会使体系趋于稳定;③ΔHR>0,ΔSR<0,无论是焓变还是熵变均不会对体系不稳定产生影响,即微粒稳定性不受温度影响。当前第36页\共有44页\编于星期三\9点3.空间稳定效应的特点由于空间稳定效应的存在,微粒间相互作用能ΦT应写成:
ΦT=ΦR+ΦA+ΦS
式中,ΦR—静电排斥能;ΦA—吸引能,ΦS—空间稳定效应产生的排斥能。由于在微粒相距很近时ΦS趋于无穷大,故在第一极小处的聚沉不大可能发生,微粒的聚结多表现为较远距离上的絮凝。空间稳定作用受电解质浓度的影响很小,它在水体系及非水体系中均可起作用,能够使很浓的分散体系稳定。当前第37页\共有44页\编于星期三\9点四、空缺稳定理论聚合物没有吸附于微粒表面时,粒子表面上聚合物的浓度低于体相溶液的浓度,形成负吸附,使粒子表面上形成一种空缺表面层。在这种体系中,自由聚合物的浓度不同,大小不同可能使胶体聚沉,也可能使胶体稳定。使胶体分散体系稳定的理论称为空缺稳定理论(thetheoryofdepletionstabilization),亦称自由聚合物稳定理论。当前第38页\共有44页\编于星期三\9点影响空缺稳定的因素:随着聚合物溶液浓度降低,自由能曲线下移,当势垒降低到刚使胶体发生聚沉时,相应的体积浓度称为临界聚沉浓度V2*;增加浓度,自由能曲线上移,当势垒增加到刚使胶体稳定时相应的体积浓度称为临界稳定浓度V2**。由于稳定是在高浓度区出现,而聚沉则是在低浓度区发生,所以V2**总是大于V2*。V2**值小表示该聚合物的稳定能力越强,而V2*值小则表示其聚沉能力越强。当前第39页\共有44页\编于星期三\9点1.聚合物分子量的影响以分子量为4000~300000的聚氧乙烯作空缺稳定剂,讨论其分子量对聚苯乙烯乳胶稳定性的影响:①当随分子量增大时,V2*和V2**同时减少。这就是说分子量高的聚合物既是良好聚沉剂,又是良好稳定剂;②在任一相同分子量的情况下,V2**值总是大于V2*值,这说明同一聚合物在高浓度下发生稳定作用,而在低浓度下发生聚沉作用,③而对较高分子量的聚合物来说(比如M>10000时),V2*M1/2和V2**M1/2均接近一常数。即V2*和V2**值均与M1/2成反比例。影响空缺稳定的因素:当前第40页\共有44页\编于星期三\9点
2.微粒大小的影响以分子量为10000的聚氧乙烯作自由聚合物时为例,随着微粒粒度的增大,V2*和V2**之值同时减少,即尺寸较大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权授权使用合同(含授权范围和费用支付)
- 2024年产品发布会合作合同
- 2024年广州临时工雇佣合同
- 2024年度短视频内容创作与版权交易合同
- 2024年工程吊篮长期租借协议
- 2024年度智能供应链管理软件购买合同
- 2024酒店用品采购合同模板
- 2024年农民工建筑行业用工合同
- 2024【工程劳务分包合同范本】装饰工程分包合同范本3
- 2024年度电力工程吊装安全合同
- GB/T 10193-1997电子设备用压敏电阻器第1部分:总规范
- 基于solidworks flow simulation油浸式变压器散热优化分析
- CPK与CP详细讲解资料(课堂PPT)
- 光动力治疗在气道肿瘤中的临床应用课件
- 小学语文人教三年级上册 群文阅读《奇妙的中心句》
- 大数据和人工智能知识考试题库600题(含答案)
- 2023年上海机场集团有限公司校园招聘笔试题库及答案解析
- 镜头的角度和方位课件
- 污水处理常用药剂简介知识讲解课件
- 五年级上册英语课件-Unit 1《My future》第1课时牛津上海版(三起) (共28张PPT)
- 光交接箱施工规范方案
评论
0/150
提交评论