中考数学三轮冲刺《函数实际问题》解答题冲刺练习05(含答案)_第1页
中考数学三轮冲刺《函数实际问题》解答题冲刺练习05(含答案)_第2页
中考数学三轮冲刺《函数实际问题》解答题冲刺练习05(含答案)_第3页
中考数学三轮冲刺《函数实际问题》解答题冲刺练习05(含答案)_第4页
中考数学三轮冲刺《函数实际问题》解答题冲刺练习05(含答案)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学三轮冲刺《函数实际问题》解答题冲刺练习05LISTNUMOutlineDefault\l3如图,某校广场有一段25米长的旧围栏,现打算利用该围栏的一部分(或全部)为一边,围成一块100平方米的长方形草坪(如图CDEF,CD<CF)已知整修旧围栏的价格是每米1.75元,建新围栏的价格是4.5元.若CF=x米,计划修建费为y元.(1)求y与x的函数关系式,并指出x的取值范围;(2)若计划修建费为150元,能否完成该草坪围栏的修建任务?若能完成,请算出利用旧围栏多少米;若不能完成,请说明理由.LISTNUMOutlineDefault\l3某商店购进一种商品,每件商品进价为30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不必写出自变量x的取值范围).(2)如果商店销售这种商品,每天要获得150元的利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大.LISTNUMOutlineDefault\l3某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数解析式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米时,鱼塘的长是多少米?LISTNUMOutlineDefault\l3将油箱注满k升油后,轿车可行驶的总路程s(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系s=eq\f(k,a)(k是常数,k≠0).已知某轿车油箱注满油后,当平均耗油量为0.1升/千米时,可行驶700千米.(1)求该轿车可行驶的总路程s与平均耗油量a之间的函数解析式;(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?LISTNUMOutlineDefault\l3已知服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?LISTNUMOutlineDefault\l3某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:品种购买价(元/棵)成活率A2890%B4095%设种植A种树苗x棵,承包商获得的利润为y元.(1)求y与x之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?LISTNUMOutlineDefault\l3母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?LISTNUMOutlineDefault\l3某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B县8辆,已知调运一辆农用车的费用如表:AB甲4080乙3050(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式.(2)若要求总运费不超过900元.共有哪几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?LISTNUMOutlineDefault\l3某游泳池普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常销售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一平面直角坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.LISTNUMOutlineDefault\l3某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数关系式.(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?

LISTNUMOutlineDefault\l3\s0中考数学三轮冲刺《函数实际问题》解答题冲刺练习05(含答案)答案解析、解答题LISTNUMOutlineDefault\l3解:(1)y=1.75x+4.5(×2+x),=1.75x++4.5x=6.25x+(0<x≤25);(2)当y=150时,6.25x+=150整理得:x2﹣24x+144=0解得:x1=x2=12经检验,x=12是原方程的解,且符合题意.答:应利用旧围栏12米.LISTNUMOutlineDefault\l3解:(1)设该函数的关系式为y=kx+b,根据题意,得40=30k+故该函数的关系式为y=﹣2x+100.(2)根据题意得,(﹣2x+100)(x﹣30)=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元.(3)根据题意,得w=(﹣2x+100)(x﹣30)=﹣2x2+160x﹣3000=﹣2(x﹣40)2+200,∵a=﹣2<0,∴抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.LISTNUMOutlineDefault\l3解:(1)由长方形鱼塘的面积为2000平方米,得到xy=2000,即y=eq\f(2000,x).(2)当x=20时,y=eq\f(2000,20)=100.答:当鱼塘的宽是20米时,鱼塘的长是100米.LISTNUMOutlineDefault\l3解:(1)把a=0.1,s=700代入s=eq\f(k,a),得700=eq\f(k,0.1),解得k=70.∴该轿车可行驶的总路程s与平均耗油量a之间的函数解析式为s=eq\f(70,a).(2)把a=0.08代入s=eq\f(70,a),得s=875.答:当平均耗油量为0.08升/千米时,该轿车可以行驶875千米.LISTNUMOutlineDefault\l3解:①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.LISTNUMOutlineDefault\l3解:(1)由题意可得,y=150000﹣28x﹣40=30000+12x,即y与x之间的函数关系式是y=12x+30000;(2)由题意可得,90%x+95%≥3000×93%,解得,x≤1200,∵y=12x+30000,∴当x=1200时,y取得最大值,此时y=44400,即承包商购买A种树苗1200棵,B种树苗1800棵时,能获得最大利润,最大利润是44400元.LISTNUMOutlineDefault\l3解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30≤a≤36,∵a,b的值均为整数,∴a的值为:30、33、36,∴共有三种方案;(3)设店主获利为w元,则w=10a+(18﹣m)b,由80a+120b=9600,得:a=120﹣1.5b,则w=(3﹣m)b+1200,∵要使(2)中方案获利都相同,∴3﹣m=0,∴m=3,此时店主获利1200元.LISTNUMOutlineDefault\l3解:(1)若乙仓库调往A县农用车x辆(x≤6),则乙仓库调往B县农用车6-x辆,A县需10辆车,故甲给A县调农用车10-x辆,那么甲仓库给B县调车8-(6-x)=x+2辆,根据各个调用方式的运费可以列出方程如下:y=40(10-x)+80(x+2)+30x+50(6-x),化简得:y=20x+860(0≤x≤6);(2)总运费不超过900,即y≤900,代入函数关系式得20x+860≤900,解得x≤2,所以x=0,1,2,即如下三种方案:甲往A:10辆;乙往A:0辆甲往B:2辆;乙往B:6辆,甲往A:9;乙往A:1甲往B:3;乙往B:5,甲往A:8;乙往A:2甲往B:4;乙往B:4;(3)要使得总运费最低,由y=20x+860(0≤x≤6)知,x=0时y值最小为860,即上面(2)的第一种方案:甲往A:10辆;乙往A:0辆;甲往B:2辆;乙往B:6辆,总运费最少为860元.LISTNUMOutlineDefault\l3解:(1)选择银卡消费:y=10x+150;选择普通票消费:y=20x.(2)对于y=10x+150,令x=0,则y=150.∴A(0,150).联立y=20x,y=10x+150,解得x=15,y=300.∴B(15,300).令y=600,则10x+150=600,解得x=45,∴C(45,600).(3)根据图象可知:当0≤x<15时,选择普通票消费合算;当x=15时,选择银卡和普通票消费一样;当15<x<45时,选择银卡消费合算;当x=45时,选择金卡和银卡消费一样;当x>45时,选择金卡消费合算.LISTNUMOutl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论