版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学三轮冲刺《函数实际问题》解答题冲刺练习07LISTNUMOutlineDefault\l3某校内新华超市在开学前,计划用不多于3200元的资金购进三种学具.其进价如下:①圆规每只10元,②三角板每付6元,③量角器每只4元;根据学校的销量情况,三种学具共需进购500只(付),其中三角板付数是圆规只数的3倍.(1)商店至多可以进购圆规多少只?(2)若三种学具的售价分别为:①圆规每只13元,②三角板每付8元,③量角器每只5元,问进购圆规多少只时,获得的利润最大(不考虑其他因素)?最大利润为多少元?LISTNUMOutlineDefault\l3某公园计划在健身区铺设广场砖,现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积x(m2)满足函数关系式为y乙=kx.(1)根据图写出甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系式;(2)如果狮山公园铺设广场砖的面积为1600m2LISTNUMOutlineDefault\l3某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55~0.75元/度之间,经测算,若电价调至x元/度,则本年度新增用电量y(亿度)与(x-0.4)成反比例.又知当x=0.65时,y=0.8.(1)求y与x之间的函数解析式;(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]LISTNUMOutlineDefault\l3“美乐”超市欲购进A、B两种品牌的水杯共400个.已知两种水杯的进价和售价如下表所示.设购进A种水杯x个,且所购进的两种水杯能全部卖出,获得的总利润为W元.品牌进价(元/个)售元(元/个)A4565B3755(1)求W关于x的函数关系式;(2)如果购进两种水杯的总费不超过16000元,那么该商场如何进货才能获得最大利润?并求出最大利润.LISTNUMOutlineDefault\l3为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y万元,x个月还清贷款,若y是x的反比例函数,其图象如图所示:(1)求y与x的函数解析式;(2)若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?LISTNUMOutlineDefault\l3为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如折线图,请根据图象回答下列问题:(1)当用电量是180千瓦时时,电费是_________元;(2)第二档的用电量范围是________________;(3)“基本电价”是_________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?LISTNUMOutlineDefault\l3某花店专卖某种进口品种的月季花苗,购进时每盆花苗的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600盆,而销售单价每上涨1元,就会少售出10盆.(1)设该种月季花苗的销售单价在40元的基础上涨了x元(x>0),若要使得花店每盆的利润不得低于14元,且花店要完成不少于540盆的销售任务,求x的取值范围;(2)在(1)问前提下,若设花店所获利润为W元,试用x表示W,并求出当销售单价为多少时W最大,最大利润是什么?LISTNUMOutlineDefault\l3某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克销售(元)40393837…30每天销量(千克)60657075…110设当单价从40元/千克下调了x元时,销售量为y千克;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?LISTNUMOutlineDefault\l3已知某厂现有A种金属70吨,B种金属52吨,现计划用这两种金属生产M、N两种型号的合金产品共80000套,已知做一套M型号的合金产品需要A种金属0.6kg,B种金属0.9kg,可获利润45元;做一套N型号的合金产品需要A种金属1.1kg,B种金属0.4kg,可获利润50元.若设生产N种型号的合金产品套数为x,用这批金属生产这两种型号的合金产品所获总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获利润最大?最大利润是多少?LISTNUMOutlineDefault\l3某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
LISTNUMOutlineDefault\l3\s0中考数学三轮冲刺《函数实际问题》解答题冲刺练习07(含答案)答案解析、解答题LISTNUMOutlineDefault\l3解:(1)设进购圆规x只,则:10x+18x+4(500﹣4x)≤3200,解得:x≤100∴x至多为100,答:商店至多可以进购圆规100只.(2)设商店获得的利润为y元,进购圆规x只.则y=(13﹣10)x+(8﹣6)3x+(5﹣4)(500﹣4x)=5x+500,∵k=5>0,∴y随x的增大而增大,∵x≤100且x为正整数,∴当x=100时,y有最大值,最大值为:5×100+500=1000,答:进购100只时,商店获得的利润最大,最大利润为1000元.LISTNUMOutlineDefault\l3解:(1)y甲=(2)当k>45时,选择甲工程队更合算;当0<k<45时,选择乙工程队更合算;当k=45时,选择两个工程队的花费一样.LISTNUMOutlineDefault\l3解:(1)∵本年度新增用电量y(亿度)与(x-0.4)成反比例关系,∴设y=eq\f(k,x-0.4)(k为常数,且k≠0).∵当电价为0.65元/度时,新增用电量是0.8亿度,∴0.8=eq\f(k,0.65-0.4),解得k=0.2,∴y=eq\f(0.2,x-0.4)=eq\f(1,5x-2).(2)设当电价调至x元/度时,本年度电力部门的收益将比上年度增加20%.根据题意,得(0.8-0.3)×1×(1+20%)=(eq\f(1,5x-2)+1)(x-0.3),解得x=0.6或x=0.5(舍去).故若每度电的成本价为0.3元,则当电价调至0.6元/度时,本年度电力部门的收益将比上年度增加20%.LISTNUMOutlineDefault\l3解:由题意,得W=(65﹣45)x+(55﹣37)(400﹣x)=2x+7200.∴W关于x的函数关系式:W=2x+7200;(2)由题意,得45x+37(400﹣x)≤16000,解得:x≤150.∵W=2x+7200,∴k=2>0,∴W随x的增大而增大,∴当x=150时,W最大=7500.∴进货方案是:A种水杯购买150个,B种水杯购买250个,才能获得最大利润,最大利润为7500元.LISTNUMOutlineDefault\l3解:(1)设y与x的函数关系式为:y=eq\f(k,x)(k≠0),把P(144,0.5),代入得:0.5=,解得:k=72,∴y与x的函数解析式为:y=;(2)当x=180时,y==0.4(万元),答:则每月应还款0.4万元.LISTNUMOutlineDefault\l3解:(1)108;(2)180<x≤450;(3)0.6.(4)设直线BC的解析式为y=kx+b,由图象,得解得∴y=0.9x-121.5.当y=328.5时,0.9x-121.5=328.5.解得x=500.答:这个月他家用电500千瓦时.LISTNUMOutlineDefault\l3解:(1)由题意可得:涨价后的销量为:600﹣10x,则x≥4,600-10x≥540,解得:4≤x≤6,故x的取值范围为:4≤x≤6;(2)由题意可得:W=(x+10)=﹣10x2+500x+6000∵4≤x≤6,∴当x=6时W最大,即售价为:40+6=46(元)时,W最大=﹣10×62+500×6+6000=8640(元),答:当销售单价为46时W最大,最大利润是8640元.LISTNUMOutlineDefault\l3解:(1)y=60+5x(2)w=(40﹣x﹣20)y=﹣5(x﹣4)2+1280∴下调4元时当天利润最大是1280元(3)设一次进货m千克,由售价32元/千克得x=40﹣32=8,此时y=60+5x=100,∴m≤100×(30﹣7)=2300,答:一次进货最多2300千克(4)下调4元时当天利润最大,由x=4,y=60+5x=80,m=80×(30﹣7)=1840千克∴每次进货1840千克,售价36元/千克时,销售部利润最大.LISTNUMOutlineDefault\l3解:(1)y=50x+45(80000﹣x)=5x+3600000,由题意得,,解不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 热力供应空气净化协议
- 气象研究测绘设备租赁合同
- 智慧城市安防监控协议
- 度假村装修项目协议
- 模具合作目标合同
- 石油化工施工合同毛利评估
- 企业干部思想政研论文范文参考
- 社区体育公园建设维护协议
- 精细化工企业火灾防范指南
- 智能设计技术文件管理
- 议论文写作技巧
- 教科版五年级科学上册(风的作用) 教学课件
- 二年级下册语文试题 -“诗词大会”题库二 (word版有答案) 人教部编版
- GB/T 7702.20-2008煤质颗粒活性炭试验方法孔容积和比表面积的测定
- 新历史主义文艺思潮
- GB/T 40120-2021农业灌溉设备灌溉用热塑性可折叠软管技术规范和试验方法
- GB/T 3903.2-1994鞋类通用检验方法耐磨试验方法
- GB/T 10801.2-2018绝热用挤塑聚苯乙烯泡沫塑料(XPS)
- 12J5-1 平屋面建筑标准设计图
- 中印边境争端
- 《墨梅》课件(省一等奖)
评论
0/150
提交评论