探索勾股定理 省赛获奖_第1页
探索勾股定理 省赛获奖_第2页
探索勾股定理 省赛获奖_第3页
探索勾股定理 省赛获奖_第4页
探索勾股定理 省赛获奖_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

探索勾股定理(1)发现问题求作直角三角形ABC,使得∠ACB=90度,BC=3,AC=4.2.求作直角三角形ABC,使得∠ACB=90度,BC=3,AB=5.思考:在直角三角形中,如果两边的长度确定下来,那么第三边的长度也随之确定下来。这就说明直角三角形中,三条边存在着一个等量关系。受台风影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?4米3米发现问题ABC图1-1ABC图1-2观察图1-1、图1-2,并填写右表:

A的面积(单位面积)

B的面积(单位面积)

C的面积(单位面积)图1-1图1-2169254913探究一(特殊)若设正方形A、B、C的边长分别为a,b,c,猜想:a,b,c之间有什么数量关系?利用拼图来验证a2+b2=c2:cab1、准备四个全等的直角三角形(设直角三角形的两条直角边分别为a,b,斜边c);2、你能用这四个直角三角形拼成一个正方形吗?拼一拼试试看3、你拼的正方形中是否含有以斜边c为边的正方形?4、你能否就你拼出的图说明a2+b2=c2?探究二(一般)cabcabcabcab∵c2=4•ab/2+(b-a)2

=2ab+b2-2ab+a2

=a2+b2∴a2+b2=c2大正方形的面积可以表示为;也可以表示为c24•ab/2+(b-a)2cabcabcabcab∵(a+b)2=

c2+4•ab/2a2+2ab+b2=

c2+2ab∴a2+b2=c2大正方形的面积可以表示为;也可以表示为(a+b)2c2+4•ab/2勾股定理(gou-gutheorem)如果直角三角形两直角边分别为a、b,斜边为c,那么即直角三角形两直角边的平方和等于斜边的平方。abc勾股弦在西方又称毕达哥拉斯定理!形成新知读一读勾股世界我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角三角形,如果勾等于三,股等于四,那么弦就等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中。在这本书中的另一处,还记载了勾股定理的一般形式。

1945年,人们在研究古巴比伦人遗留下的一块数学泥板时,惊讶地发现上面竟然刻有15组能构成直角三角形三边的数,其年代远在商高之前。相传二千多年前,希腊的毕达哥拉斯学派首先证明了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。例1、已知△ABC中,∠C=Rt∠,BC=a,AC=b,AB=C已知:a=1,b=2,求c;已知:a=15,c=17,求b;

已知:a=4/5,b=3/5,求c;(4)已知:c=34,a:b=8:15,求a,b.x例2、如图,你能计算出下列直角三角形中未知边的长吗?2反思:若要你在数轴上准确表示,你会参考上面的结果画吗?小结:利用勾股定理可以解决直角三角形的边长。-10121x02解:由勾股定理得x²=1²+2²=5∵x>0∴x=例3、如图所示是一个长方形零件的平面图,尺寸如图所示,求两孔中心A,B之间的距离.(单位:毫米)AB901604040C1、下图中的三角形是直角三角形,其余是正方形,求下列图中字母所表示的正方形的面积.=625225400A22581B=144想一想ABCD7cm2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm2。49以直角三角形三边为边作等边三角形,这3个等边三角形的面积之间有什么关系?ABCDEF

议一议印度数学家什迦逻(1141年-1225年?)曾提出过“荷花问题”:

“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”x2x+0.50.5CAB挑战数学家小明的妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么吗?我们通常所说的29英寸或74厘米的电视机,是指其荧屏

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论