山东省聊城市阳谷县第三职业高级中学2021年高二数学理下学期期末试题含解析_第1页
山东省聊城市阳谷县第三职业高级中学2021年高二数学理下学期期末试题含解析_第2页
山东省聊城市阳谷县第三职业高级中学2021年高二数学理下学期期末试题含解析_第3页
山东省聊城市阳谷县第三职业高级中学2021年高二数学理下学期期末试题含解析_第4页
山东省聊城市阳谷县第三职业高级中学2021年高二数学理下学期期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省聊城市阳谷县第三职业高级中学2021年高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.两个等差数列和,其前项和分别为,且则=(

)A.

B.

C.

D.参考答案:D2.已知函数的导函数的图像如下,则(

A.函数有1个极大值点,1个极小值点

B.函数有2个极大值点,2个极小值点C.函数有3个极大值点,1个极小值点D.函数有1个极大值点,3个极小值点参考答案:A略3.有以下四个命题:①“所有相当小的正数”组成一个集合;②由1,2,3,1,9组成的集合用列举法表示{1,2,3,1,9};③{1,3,5,7}与{7,5,3,1}表示同一个集合;④{y=﹣x}表示函数y=﹣x图象上所有点的集合.其中正确的是(

)A.①③ B.①②③ C.③ D.③④参考答案:C【考点】集合的相等;集合的表示法.【专题】计算题.【分析】在①中,不满足集合的确定性,故①不正确;在②中,不满足集合的互异性,故②不正确;在③中,满足集合相等的概念,故③正确;在④中不满足点集的概念,故④不正确.【解答】解:在①中,因为不满足集合的确定性,故①不正确;在②中,{1,2,3,1,9}不满足集合的互异性,故②不正确;在③中,{1,3,5,7}与{7,5,3,1}表示同一个集合,故③正确;在④中,{y=﹣x}不表示点集,故④不正确.故选C.【点评】本题考查集合的性质和集合相等及点集的概念,是基础题.解题时要认真审题,仔细解答.4.空间两个角α,β的两边分别对应平行,且α=60°,则β为()A.60° B.120° C.30° D.60°或120°参考答案:D【考点】平行公理.【分析】根据平行公理知道当空间两个角α与β的两边对应平行,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.【解答】解:如图,∵空间两个角α,β的两边对应平行,∴这两个角相等或互补,∵α=60°,∴β=60°或120°.故选:D.5.在正方体中,下列几种说法错误的是A.

B.C.与成角

D.与成角参考答案:B试题分析:如图,A选项中在平面上的投影为,而,故,A正确

B选项中,,故,B正确C选项中,考点:导数的定义6.将一枚质地均匀的硬币先后抛三次,恰好出现一次正面向上的概率(

A.

B.

C.

D.参考答案:C7.用1,2,3,4这四个数字可排成必须含有重复数字的四位数有(

)A.265个 B.232个 C.128个

D.24个参考答案:B略8.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行,②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面,③如果两条直线都平行于一个平面,那么这两条直线互相平行,④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直.其中真命题的个数是(

).A.4 B.3 C.2 D.1参考答案:B①正确,是线面平行的性质定理.②正确,是线面垂直的判定定理.③不正确,这两条直线也可能相交、异面.④正确,是面面垂直的判定定理.故选.9.函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则点(a,b)为()A.(3,﹣3) B.(﹣4,11) C.(3,﹣3)或(﹣4,11) D.不存在参考答案:B【考点】6C:函数在某点取得极值的条件.【分析】首先对f(x)求导,然后由题设在x=1时有极值10可得解之即可求出a和b的值.【解答】解:对函数f(x)求导得f′(x)=3x2﹣2ax﹣b,又∵在x=1时f(x)有极值10,∴,解得或,验证知,当a=3,b=﹣3时,在x=1无极值,故选B.10.已知三棱锥S﹣ABC,满足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,若该三棱锥外接球的半径为,Q是外接球上一动点,则点Q到平面ABC的距离的最大值为()A.3 B.2 C. D.参考答案:D【考点】MK:点、线、面间的距离计算.【分析】由题意,三棱锥的外接球即为以SA,SB,SC为长宽高的正方体的外接球,求出球心到平面ABC的距离,即可求出点Q到平面ABC的距离的最大值.【解答】解:∵三棱锥S﹣ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,∴三棱锥的外接球即为以SA,SB,SC为长宽高的正方体的外接球,∵该三棱锥外接球的半径为,∴正方体的体对角线长为2,∴球心到平面ABC的距离为×=∴点Q到平面ABC的距离的最大值为+=.故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.已知正数满足,则的最小值为______________.参考答案:-4<a≤0略12.在的展开式中,x6的系数是.参考答案:1890【考点】二项式定理.【分析】先分析题目求在的展开式中x6的系数,故要写出的展开式中通项,判断出x6为展开式中的第几项,然后代入通项求出系数即可.【解答】解:在的展开式中通项为故x6为k=6,即第7项.代入通项公式得系数为.=9C106=1890故答案为:1890.13.若函数f(x)=x3﹣3x+5﹣a(a∈R)在上有2个零点,则a的取值范围是.参考答案:【考点】6B:利用导数研究函数的单调性.【分析】求出函数的导数,得到函数的单调区间,从而求出函数的极值以及端点值,根据函数的零点求出a的范围即可.【解答】解:若函数f(x)=x3﹣3x+5﹣a,则f′(x)=3x2﹣3=3(x﹣1)(x+1),令f′(x)>0,解得:x>1或x<﹣1,令f′(x)<0,解得:﹣1<x<1,故f(x)在(﹣3,﹣1)递增,在(﹣1,1)递减,在(1,)递增,故f(x)极大值=f(﹣1)=7﹣a,f(x)极小值=f(1)=3﹣a,而f(﹣3)=﹣13﹣a,f()=﹣a,故或,解得:a∈,故答案为:.14.已知且,现给出如下结论;①;②;③;④;⑤其中正确结论的序号是

.参考答案:③④⑤.15.已知随机变量X服从正态分布,则

.参考答案:0.28略16.在△ABC中,BC=2,,以AB为边作等腰直角三角形ABD(B为直角顶点,C,D两点在直线AB的同侧),当变化时,线段CD的最小值为________.参考答案:

17.已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,,为的准线上的一点,则的面积为______.参考答案:36设抛物线的解析式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,,是与的交点,又轴,,,又点在准线上,设过点的垂线与交于点,,.故答案为36.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)设命题,命题,若“”为假命题,“”为真命题,求实数的取值范围科_网参考答案:解:由,得,因此,或,由,得.因此或,因为是的必要条件,所以,即.因此解得.略19.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=CB=CC1=2,E是AB中点.(Ⅰ)求证:AB1⊥平面A1CE;(Ⅱ)求直线A1C1与平面A1CE所成角的正弦值.参考答案:【考点】直线与平面垂直的判定;直线与平面所成的角.【分析】(Ⅰ)由ABC﹣A1B1C1是直三棱柱,可知CC1⊥AC,CC1⊥BC,∠ACB=90°,AC⊥BC.建立空间直角坐标系C﹣xyz.则A,B1,E,A1,可得,,,可知,根据,,推断出AB1⊥CE,AB1⊥CA1,根据线面垂直的判定定理可知AB1⊥平面A1CE.(Ⅱ)由(Ⅰ)知是平面A1CE的法向量,,进而利用向量数量积求得直线A1C1与平面A1CE所成角的正弦值【解答】(Ⅰ)证明:∵ABC﹣A1B1C1是直三棱柱,∴CC1⊥AC,CC1⊥BC,又∠ACB=90°,即AC⊥BC.如图所示,建立空间直角坐标系C﹣xyz.A(2,0,0),B1(0,2,2),E(1,1,0),A1(2,0,2),∴,,.又因为,,∴AB1⊥CE,AB1⊥CA1,AB1⊥平面A1CE.(Ⅱ)解:由(Ⅰ)知,是平面A1CE的法向量,,∴|cos<,>|==.设直线A1C1与平面A1CE所成的角为θ,则sinθ=|cos<,>|=.所以直线A1C1与平面A1CE所成角的正弦值为.20.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求二面角B﹣DC﹣B1的余弦值.参考答案:【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)直三棱柱的底面三边长分别为3、4、5,∴AC,BC,CC1两两垂直,以C为坐标原点,直线CA,CB,CC1分别为x轴、y轴、z轴建立空间直角坐标系.只要证明,即可证明AC⊥BC1.(2)设CB1∩C1B=E,则E(0,2,2),可得,即DE∥AC1,即可证明AC1∥平面CDB1.(3)设平面CDB1的一个法向量为=(x,y,z),则,可求得平面CDB1的一个法向量为.取平面CDB的一个法向量为,利用=即可得出.【解答】(1)证明:∵直三棱柱的底面三边长分别为3、4、5,∴AC,BC,CC1两两垂直,以C为坐标原点,直线CA,CB,CC1分别为x轴、y轴、z轴建立空间直角坐标系.C(0,0,0),A(3,0,0),B(0,4,0),C1(0,0,4),D.∵,∴,即AC⊥BC1.(2)证明:设CB1∩C1B=E,则E(0,2,2),,∴,即DE∥AC1,∵DE?平面CDB1,AC1?平面CDB1,∴AC1∥平面CDB1.(3)解:=,设平面CDB1的一个法向量为=(x,y,z),则,则,可求得平面CDB1的一个法向量为=(4,﹣3,3).取平面CDB的一个法向量为,则===.由图可知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论