版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年福建省漳州市坂里中学高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知x,y满足约束条件则z=2x+3y的最大值为()A.8 B.9 C.10 D.11参考答案:D【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(1,3),化目标函数z=2x+3y为y=,由图可知,当直线y=过点A时,直线在y轴上的截距最大,z有最大值为11.故选:D.2.已知函数f(x)=(k∈R),若函数y=|f(x)|+k有三个零点,则实数k的取值范围是()A.k≤2 B.﹣1<k<0 C.﹣2≤k<﹣1 D.k≤﹣2参考答案:D【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】由题意可得|f(x)|=﹣k≥0,进而可得k≤0,作出图象,结合图象可得答案.【解答】解:由y=|f(x)|+k=0得|f(x)|=﹣k≥0,所以k≤0,作出函数y=|f(x)|的图象,由图象可知:要使y=﹣k与函数y=|f(x)|有三个交点,则有﹣k≥2,即k≤﹣2,故选D.【点评】本题考查根的存在性及个数的判断,作出函数的图象是解决问题的关键,属中档题.3.设甲、乙两地的距离为,小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数的图象为
参考答案:D4.在等差数列中,已知与是方程的两个根,若,则=(
)(A)2012 (B)2013 (C)2014 (D)2015参考答案:C由题意知,,。又,∴,,∴。∴,∴。故选C。5.已知x与y之产间的几组数据如下表:x0123y0267 则y与x的线性回归方程=bx+a必过 A.(1,2) B.(2,6) C.() D.(3,7)参考答案:C因为,所以线性回归方程=bx+a必过()。6.已知两条直线和,与函数的图象从左至右相交于点,与函数的图象从左至右相交于点.记线段和在轴上的投影长度分别为,当变化时,的最小值为A. B. C. D.参考答案:B本题考查函数的图像与性质。令A,B,C,D各点的横坐标分别为,可得:,,,;即,,,;所以,;所以,当m=1时,等号成立;所以的最小值为8。选B。7.下列函数中与为同一函数的是(
)
A、
B、
C、
D、参考答案:B略8.已知平面向量,,则(
)A.(-2,-1)
B.(-2,1)
C.(-1,0)
D.(-1,2)参考答案:D9.设变量x,y满足约束条件,则目标函数的最大值为(A)10
(B)8
(C)7
(D)2参考答案:B10.如果执行如图所示的程序框图,那么输出的a=()A.2 B. C.﹣1 D.以上都不正确参考答案:B【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n≤2016,执行循环体,a=﹣1,n=5满足条件n≤2016,执行循环体,a=2,n=7满足条件n≤2016,执行循环体,a=,n=9…由于2015=3×671+2,可得:n=2015,满足条件n≤2016,执行循环体,a=,n=2017不满足条件n≤2016,退出循环,输出a的值为.故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,本题中分析a的取值规律是解题的关键,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.已知集合
。参考答案: 12.在直角三角形中,,,点是斜边上的一个三等分点,则
.参考答案:由题意知三角形为等腰直角三角形。因为是斜边上的一个三等分点,所以,所以,所以,,所以。13.在一座20m高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的高为
.参考答案:20(1+)m【考点】解三角形的实际应用.【专题】计算题.【分析】在直角三角形ABD中根据BD=ADtan60°求得BD,进而可得答案.【解答】解析:如图,AD=DC=20.∴BD=ADtan60°=20.∴塔高为20(1+)m.【点评】本题主要考查解三角形在实际中的应用.属基础题.14.规定符号“”表示一种两个正实数之间的运算,即ab=,a,b是正实数,已知1=3,则函数的值域是
参考答案:略15.已知直线l:y=x﹣1与曲线相切于点A,则A点坐标为.参考答案:(1,0)【考点】利用导数研究曲线上某点切线方程.【分析】设切点A(m,n),代入切线的方程和曲线方程,求得函数的导数,求得切线的斜率,化为lnm+m2=1,由f(m)=lnm+m2的导数大于0,且f(1)=0,解方程可得m=1,n=0,进而得到切点的坐标.【解答】解:设切点A(m,n),可得m﹣1=n,=n,y=的导数为y′=,可得=1,即为lnm+m2=1,由f(m)=lnm+m2的导数为+2m>0,则f(m)递增,且f(1)=1,即有方程lnm+m2=1的解为m=1.可得n=0.即为A(1,0).故答案为:(1,0).16.将函数的图象向右平移个单位,得到函数,则的表达式为__________.参考答案:∵,↓向右平移个单位,,∴.17.下面给出四种说法:①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;②命题P:“?x0∈R,x02﹣x0﹣1>0”的否定是¬P:“?x∈R,x2﹣x﹣1≤0”;③设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(﹣1<X<0)=﹣p④回归直线一定过样本点的中心(,).其中正确的说法有
(请将你认为正确的说法的序号全部填写在横线上)参考答案:②③④【考点】BS:相关系数.【分析】①用相关指数R2来刻画回归效果时,R2越大,模型的拟合效果越好;②根据特称命题的否定的全称命题,写出P的否定¬P即可;③根据正态分布N(0,1)的性质,由P(X>1)=p求出P(﹣1<X<0)的值;④回归直线一定过样本点的中心(,).【解答】解:对于①,用相关指数R2来刻画回归效果时,R2越大,说明模型的拟合效果越好,∴①错误;对于②,命题P:“?x0∈R,x02﹣x0﹣1>0”的否定是¬P:“?x∈R,x2﹣x﹣1≤0”,②正确;对于③,根据正态分布N(0,1)的性质可得,若P(X>1)=p,则P(X<﹣1)=p,∴P(﹣1<X<1)=1﹣2p,∴P(﹣1<X<0)=﹣p,③正确;对于④,回归直线一定过样本点的中心(,),正确;综上,正确的说法是②③④.故答案为:②③④.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知向量,,.(Ⅰ)求函数的最小正周期及对称轴方程;(Ⅱ)在△ABC中,角A,B,C的对边分别是若,b=1,△ABC的面积为,求的值.参考答案:(Ⅰ)最小正周期T=,对称轴方程为;(Ⅱ).(Ⅰ).
…4分所以最小正周期T=,对称轴方程为
……(6分)(Ⅱ)依题意即,由于,所以A=
………………(9分)又∵且b=1,∴得c=2,在中,由余弦定理得,所以
…(12分)19.已知函数.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式对任意实数恒成立,求的取值范围.参考答案:解:(Ⅰ)当时,即,当时,得,即,所以;当时,得成立,所以;当时,得,即,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则或,解得或,
故的取值范围是.略20.已知{an}是各项为正数的等比数列,且a1=1,a2
+a3=6,求该数列前10项的和S10参考答案:略21.已知是线段外一点,若,.(1)设点、是线段的三等分点,、及的重心依次为,试用向量、表示;(2)如果在线段上有若干个等分点,你能得到什么结论?请证明你的结论.说明:第(2)题将根据结论的一般性程度给予不同的评分.参考答案:解:(1)如图:点、是线段的三等分点,,同理可得:,,(2分)则(4分)(2)层次1:设是的二等分点,则;;设是的四等分点,则;或设是的等分点,则等等(结论2分,证明2分)层次2:设是的等分点,(结论2分,证明4分)层次3:设是的等分点,则;
(结论3分,证明7分)证:略22.在进行一项掷骰子放球游戏中,规定:若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商业用地租赁权转授权合同
- 2024年学校服装供应合同
- 2024年度工程变更与居间服务合同
- 我们身体课件教学课件
- 2024北京市车指标租赁期间保险服务合同
- 2024年大型活动策划与执行服务合同
- 2024的保安服务委托合同范文
- 2024年度卫星通信服务与租赁合同
- 2024年建筑工程水电施工合同
- 2024年建筑工程施工总包合同精粹
- GB/T 42455.2-2024智慧城市建筑及居住区第2部分:智慧社区评价
- 2024年认证行业法律法规及认证基础知识
- YYT 0653-2017 血液分析仪行业标准
- 刑事受害人授权委托书范本
- 《文明上网健康成长》的主题班会
- 框架结构冬季施工方案
- 柴油购销合同
- MD380总体技术方案重点讲义
- 天车道轨施工方案
- 传染病转诊单
- 手术室各级护士岗位任职资格及职责
评论
0/150
提交评论