凑微分和分部积分法_第1页
凑微分和分部积分法_第2页
凑微分和分部积分法_第3页
凑微分和分部积分法_第4页
凑微分和分部积分法_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§5.3

凑微分法和分部积分法一、凑微分法二、分部积分法—

凑微分法(第一换元积分法)1方法:若有

f

(u)du

=F

(u)+C,且u

=u(x)可导,则有

f

(u(x))u¢(x)dx

=

F

(u(x))

+

C2

操作方法:或

f(u(x))du(x)=F

(u(x))+C

f

(x)dx令u(x)=yF

(u(x))

+

C=

g(u(x))u¢(x)dx

=

g(u(x))du(x)

g(

y)dy

=

F

(

y)

+

C代回y

=u(x)3

常见的换法:依微分的计算有如下一些常用换法(5)

f

(cos

x)

sin

xdx

f

(ax

+

b)dx

f

(ex

)exdx1f

(xm

)xm

-1dx

f

(ln

x)

x

dx=

1

f

(ax

+

b)d

(ax

+

b)(a

0)a=

f

(ex

)dexm=

1

f

(xm

)dxm

(m

0)=

f

(ln

x)d

ln

x=

f

(cos

x)d

cos

x(6)

f

(sin

x)

cos

xdx1-

x2(7)

f(arcsin

x)

1

dx

=

f(arcsin

x)d

arcsin

x1+

x2(8)

f

(arctan

x)1

f

(tan

x)

sec

2

xdx

f

(cot

x)

csc2

xdxdx

=

f

(arctan

x)d

arctan

x=

f

(sin

x)d

sin

x=

f

(tan

x)d

tan

x=

-

f

(cot

x)d

cot

x4

举例例1

求下列不定积分dx50(1)

(2x

+

5)=2150(2x

+

5)

d

(2x

+

5)102

102=

1

u50du

=

1

u51

+

C

=

1

(2x

+

5)51+

C2(2)x

+1

+1dx

=

x

-1

(x

+1

-

x

-1

dxx

+1

+

x

-1)(

x

+1

-

x

-1)=

1

x

-1d

(x

-1)2x

+1d

(x

+1)

-

1

x

+1dx

-

1

x

-1dx

=

1

2

23

323=

1

[(x

+1)

2

-(x

-1)

2

]

+

C(3)

(sin

x

+cos)2

dx

=

(1+

2

sin

x

cos

x)dx

=

dx

+

sin

2xdx=

x

+

1

sin

2xd

(2x)

=

x

-

cos

2x

+

C2

21(4)2

2a

+

xd

(

x

)a1x

2aa21+(

)adx

=

1

1+(

x

)2a

1

1dx(a

0)

=

du

=

arctan

u

+

C

=

1

arctan

x

+

Ca

a

a1+

u2

a

a令u

=

x

1

1x2(5)

xe

dx=

e

dx

=2e

duu1212x2=

1

eu

+

C

=

1

ex2

+

C2

2(6)

f

¢(x)

f

(x)dx=

f

(x)df

(x)

=

udu=

1

u2

+

C

=

1

[

f

(x)]2

+

C2

2例2

求下列不定积分(1)sin

ax

cos

bxdx(a,

b

0)2=

1

[sin(a

+

b)x

+

sin(a

-

b)x]dxDW当a=

b时,

W

=

1

sin(a

+

b)xdx

=

1

sin(a

+

b)xd

(a

+

b)x2 2(a

+

b)cos(a

+

b)x

+

C2(a

+

b)=

-1当a

+

b

=

0时,

W

=

1

sin(a

-

b)xdx

=

1

sin(a

-

b)xd

(a

-

b)x2 2(a

-

b)cos(a

-

b)x

+

C2(a

-

b)=

-12

2当a2

„b2时,W=1

sin(a

+b)xdx

+1

sin(a

-b)xdxa

-

bcos(a

+

b)x

+

cos(a

-

b)x]

+

C2

a

+

b=

-

1

[1

1(2)

(sin

x)m

cos

xdx=

(sin

x)m

d

sin

x

=ln

sin

x

+

C,

m

=

-1+

C,

m

-1m

+1(sin

x)m

+1(3)

cos3

xdx=

(1-

sin

2

x)d

sin

x

=

(1-

u2

)du3u31=

u

- +

C

=

sin

x

-

sin

x

+

C3

3(4)sin2

xdx=

1-

cos

2xdx2=

1

dx

-

1

cos

2xd

(2x)

=

x

-

sin

2x

+

C2

4

2

45

有理函数的不定积分(补)Q

(

x

)P

(

x

)x

-

a若为假有理分式,则首先用多项式除法将有理函数变为多项式与真有理分式的积分,而多项式的积分比较容易求得,因而有理分式的积分问题关键是真有理分式的积分问题,真有理分式的积分主要有以下几个方面:(1)分母为—次形式:

dx

=

lnx

-

a

+

C

dx

=

1

+

C(x

-

a)k

(1-

k

)(x

-

a)k

+1(2)分母为二次形式:dxx2

+

bx

+

cax

+

h①若分母能因式分解,则用待定系数法将被积函数拆成两个分母为一次的分式的和,然后用(1)的结论。A2+

,(A1,A2为待定常数)x

-

B1

x

-

B2

ax

+

h

= A1x2

+

bx

+

caa

a

a②若分母不能因式分解,则对分母进行配方,然后利用反正切函数的基本积分公式求解。d

(

x

+

b

)

dx

=

1

a

=

1

arctan

x

+

b

+

C1+(

x

+

b

)2a2

+(x

+

b)2(3)分母为三次或三次以上:则首先将分母分解成—次和二次的乘积,然后用待定系数法将其拆分成分母为一次和二次的分式积分,再利用(1)或(2)的结论求解。例3

求下列不定积分dxx

+12x2

-

x(1)dxx

+1(2x2

+

2x)

-

3x

-

3

+

3=

x

+1(x

+1)(2x

-

3)

+

3=

dxdx

=

(2x

-

3)dx

+

3

x

+1=

x2

-

3x

+

3ln

x

+1

+

Cdxx

+

x

+1(2)2x2

-

x

+1dxx

+

x

+1=

2(x2

+

x

+1)

-

2x=

dx

-

2xdx

=

dx

-

(2x

+1-1)dx

x2

+

x

+1

x2

+

x

+1=

x

-

(2x

+1)dx

+

dx

x2

+

x

+1

x2

+

x

+1(x

+

1

)2

+

3x2

+

x

+12d

(x

+

1

)=

x

-

d

(x

+

x

+1)

-

2

3

232

43

arctan[2 3(x

+

1

)]

+

C=

x

-

ln(x2

+

x

+1)

+

2(3)

dx

dx

1-

x2

(1-

x)(1+

x)(

-

)dx1

1

1

2

x

+1

x

-1===

1

[

dx

-

dx ]

=

1

(ln

x

+1

-

ln

x

-1

+

C1)2

x

+1

x

-1

2=

1

ln

x

+1

+

C2

x

-1dxx

-

1(

4

)

x

(

x

2

+

1)解:首先用待定系数法拆分x

-1

A Bx

+

C

(

A

+

B)x2

+

Cx

+

A=

+

=x(x2

+1)

x

x2

+1

x(x2

+1)比较两边分子,恒等式要求相同次数的系数必须全相等,因此有:A

+

B

=

0,

C

=1,

A

=

-1,\

A

=

-1,

B=1,

C

=1\

x

-1

=

-1

+

x

+1xx(x2

+1)

x2

+1x

2

+

1x

+

1

)

dxx\

dx

=

(

-

1

+x

-

1x

(

x

2

+

1)=

-

dx

+

dx

+

xdx 1+

x2x1+

x21

d

(1+

x2

)=

-ln

x

+arctan

x

+

21+

x22=

-ln

x

+arctan

x

+

1

ln(x2

+1)

+

Cdxx(x

+1)2x

-1(5)(x

+1)2(x

+1)2x(x

+1)22x x

+1C

=

-1

+

1x x

+1

x

-1

=

A

+

B++(x

+1)2x x

+1\

dx

=

-

dx

+

dx

+

2x(x

+1)2x

-1dx=

-ln

x

+

d

(x

+1)

+

2

d

(x

+1)(x

+1)2x

+1+

Cx x

+1+

C

=

ln

x

+1

-x

+1=

-ln

x

+ln

x

+1

-22例4

求下列不定积分dx(1)21+

xx

ln(1+

x2

)1+

x22d

(1+

x

)1 ln(1+

x2

)=

224=

1

ln(1+

x2

)d

ln(1+

x2

)

=

1

[ln(1+

x2

)]2

+

Cex2

x

dx1

+

e(2)xdex1+(e

)=

x

2

=

arctan

e

+

C(3)sec

xdx=

dx

=

cos

x

dx=

d

sin

xcos2

xcos

x1-

sin2

x+

C1+

sin

x

1

(1+

sin

x)2=

ln

+

C

=

ln1-

sin

x

2

1-

sin2

xcos

x=

ln

1+

sin

x

+

C

=

ln

sec

x

+

tan

x

+

Cdx(4)

1+

ex

=

d

(e-x

+1)-x

-xdx

=

-e

+1

e

+1e-x=

-ln(1+e-x

)

+C

=

x

-ln(1+ex

)

+C1方法:若u(x),v(x)有连续导数,且u¢(x)v(x)dx存在,则

u(x)v¢(x)dx也存在,且有

u(x)v¢(x)dx

=u(x)v(x)-

u¢(x)v(x)dx或:u(x)dv(x)=u(x)v(x)-

v(x)du(x)2

证明:(u(x)v(x))

=

u

(x)v(x)

+

u(x)v

(x)\

u(x)v

(x)

=

(u(x)v(x))

-

u

(x)v(x)两边同时不定积分,则有:u(x)v¢(x)dx

=

u(x)v(x)

-

u¢(x)v(x)dx二

分部积分法3

说明:(1)此法是将u(x)v

(x)的积分计算转化为u

(x)v(x)的积分计算因而要求

u¢(x)v(x)dx比

u(x)v¢(x)dx的计算简单才有意义(2)此法常用于计算两类性质不同函数乘积的不定积分,在计算中关键是u(x)与v(x)的选择问题,选择得当,计算将简

x

cos

xdx化;否则会更复杂,有时甚至无法求出。如令u

=x,dv=cos

xdx,即v

=sin

x,则有2

x

cos

xdx

=

xd

sin

x

=

x

sin

x

-

sin

xdx

=

x

sin

x

+cos

x

+

Cx2若令u

=

cos

x,

dv

=

xdx,即v

=

,则有1

x

cos

xdx

=

cos

xd

2

=

2

cos

x

-

2

d

cos

x

=

2

cos

x

+

2

x

sin

xdx2x2

x2

x2

x2(3)—般的选择原则:在选择u(x)与v(x)上,一般来说,有如下规律反三角函数、对数函数、幂函数、三角函数、指数函数相乘,将排在前者令为u(x),排在后者令为v(x)的导数,一般能简化计算。4

举例例1

求下列不定积分(1)

xexdx=

xdex=

xex

-

exdx

=

xex

-

ex

+

C(2)

ln

xdx

=

x

ln

x

-

xd

ln

x=

x

ln

x

-

x

+

C=

x

ln

x

-

dx(3)

x

sin2

xdx=

x

1-

cos

2x

dx

=

1

xdx

-

1

x

cos

2xdx2

2

21

1=

-

xd

sin

2x

=

-

(x

sin

2x

-

sin

2xdx)4

4

4

4x2

x2- +

C=

-8x

sin

2x

cos

2x4

4x2(4)

arctan

xdx=

x

arctan

x

-

xd

arctan

x=

x

arctan

x

-

x

dx

=

x

arctan

x

-

1

1+

x2

21+

x2d

(1+

x2

)2=

x

arctan

x

-

1

ln(1+

x2

)

+

C例2

求下列不定积分(计算过程中出现方程)(1)

ex

sin

xdx

=

sin

xdex

=

ex

sin

x

-

exd

sin

x=

ex

sin

x

-

ex

cos

xdx

=

ex

sin

x

-

cos

xdex2=

ex

sin

x

-(ex

cos

x

-

exd

cos

x)=

ex

sin

x

-

ex

cos

x

-

ex

sin

xdx\

ex

sin

xdx

=

1

ex

(sin

x

-

cos

x)

+

C(2)x2

+

a2

-

xdx2

+

a2

dx(a

>

0)

=

xx2

+

a2dxx

+

ax2

+

a2x2

+

a2

-

a2dx

=

x

x2

+

a2

-

2

2x2=

x

x2

+

a2

-

x2

+

a2

dxx2

+

a2=

x

x2

+

a2

+

a2

dx

-

x2

+

a2

)

+

C1而依前例题有

dx

=

ln(x

+x2

+

a2\

x2

+

a2

dx

=

1

[x

x2

+

a2

+

a2

ln(x

+

x2

+

a2

)]

+

C2例3

求(x2

+

a2

)nIn

=

dx

(a

>

0,

n

=

0,1,2,)解:I0

=

dx

=

x

+

Cd

(

x

)

=

1

arctan

x

+

Ca

a

a1+(

x

)2aax2

+

a2当n

‡1时,有I1

=

dx

=

1

1In

=

x

-

xd

(x2

+

a2

)-n(x2

+

a2

)nxx2(x2

+

a2

)n

(x2

+

a2

)n+1=

+

2n

dxx

x2

+

a2

-

a2=

(x2

+

a2

)n

+

2n

(x2

+

a2

)n+1dx(x2

+

a2

)n+1=

x

+

2n

dx

-

2na2

dx

(x2

+

a2

)n

(x2

+

a2

)n=

+

2nIn

-

2na2

In+1x(x2

+

a2

)2所以有递推关系式:2na2+

2n

-1

In

,

n

=1,2,1

x2na2

(x2

+

a2

)nIn+1

=a特别地有:I2

=

dx

n

=1

1

x

+

1

arctan

x

+

C(x2

+

a2

)2

2a2

x2

+

a2

2a3例4

求下列不定积分:(1)

ln(1+x

)dxx

=

t

2

,

t

0

ln(1+

t)dt

21+t2=

t

2

ln(1+

t)

-

t

2d

ln(1+

t)

=

t2

ln(1+t)

-

tdtdt=

t

ln(1+

t)

-

(t

-1)dt

-

1+

t2+

t

-

ln(1+

t)

+

Ct

2=

t

ln(1+

t)

-22t

=

x+

Cx2(x

-1)

ln(1+

x

)

+

x

-(2)

(1

-

x)

arcsin(

1

-

x)dx

t

=1-

x2

x

-

x

2-

t

arcsin

tdt1-

t

2

2t

=

sin

u,

u

<

p-

d

sin

u

=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论