版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省岳阳市洛王中学高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品的销售情况,需要从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2).则完成(1)、(2)这两项调查宜采用的抽样方法依次是(
)A.分层抽样,系统抽样
B.分层抽样,简单的随机抽样C.系统抽样,分层抽样
D.简单的随机抽样,分层抽样参考答案:B略2.曲线的一条切线与直线垂直,则的方程为(
)A.
B.XC.
D.参考答案:D3.双曲线﹣=1的渐近线方程为()A.y=±x B.y=±2x C.y=±x D.y=±x参考答案:C【考点】双曲线的简单性质.【分析】渐近线方程是﹣=0,整理后就得到双曲线的渐近线方程.【解答】解:∵双曲线标准方程为﹣=1,其渐近线方程是﹣=0,整理得y=±x.故选:C.4.已知函数f(x)(x∈R)满足f(x)=f(2?x),若函数y=|x2?2x?3|与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(xm,ym),则A.0 B.m C.2m D.4m参考答案:B试题分析:因为的图像都关于对称,所以它们图像的交点也关于对称,当为偶数时,其和为;当为奇数时,其和为,因此选B.【考点】函数图像的对称性【名师点睛】如果函数,,满足,恒有,那么函数的图象有对称轴;如果函数,,满足,恒有,那么函数的图象有对称中心.5..直线为参数)和圆交于A,B两点,则AB的中点坐标为()A.(3,-3) B. C. D.参考答案:C将直线参数方程代入圆方程得:,解得或,所以两个交点坐标分别是,所以中点坐标为。故选D。点睛:本题考查直线的参数方程应用。本题求直线和圆的弦中点坐标,直接求出两个交点坐标,得到中点坐标。只需联立方程组,求出解即可。参数方程的求法基本可以代入直接求解即可。6.已知三棱锥S—ABC的所有顶点都在球O的球面上,是边长为1的正三角形,SC为球O的直径,且,则此棱锥的体积为
(
)A.
B.
C.
D.参考答案:A7.用数学归纳法证明“”,则当时,应当在时对应的等式的左边加上(
)A. B.C. D.参考答案:C【分析】由数学归纳法可知时,左端,当时,,即可得到答案.【详解】由题意,用数学归纳法法证明等式时,假设时,左端,当时,,所以由到时需要添加的项数是,故选C.【点睛】本题主要考查了数学归纳法的应用,着重考查了理解与观察能力,以及推理与论证能力,属于基础题.8.二项式的展开式的第二项的系数为,则的值为 ()A. B. C.或 D.或参考答案:C9.从6名学生中,选出4人分别从事A、B、C、D四项不同的工作,若其中,甲、乙两人不能从事工作A,则不同的选派方案共有(
)
A.96种
B.180种
C.240种
D.280种参考答案:C10.若是定义域为,值域为的函数,则这样的函数共有(
)A、128个
B、126个
C、72个
D、64个参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为____;参考答案:【分析】由对六艺“礼、乐、射、御、书、数”进行全排列,基本事件的总数,再分类求得满足“数”必须排在前两节,“礼”和“乐”必须分开安排包含的基本事件个数,利用古典概型及其概率的计算公式,即可求解。【详解】由题意,对六艺“礼、乐、射、御、书、数”进行全排列,基本事件的总数为种,满足“数”必须排在前两节,“礼”和“乐”必须分开安排包含的基本事件个数:当第一节是“数”,共有种不同的排法;当第二节是“数”,共有种不同的排法,所以满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为。【点睛】本题主要考查了排列、组合的综合应用,以及古典概型及其概率的计算问题,其中解答中合理分类求解满足“数”必须排在前两节,“礼”和“乐”必须分开安排基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。12.过点(1,0)且与直线x-2y-2=0平行的直线方程
参考答案:x-2y-1=013.复数的虚部为______.参考答案:略14.如图,已知平面α⊥β,α∩β=l,A,B是直线l上的两点,C,D是平面β内的两点,且DA⊥l,CB⊥l,DA=2,AB=4,CB=4,P是平面α上的一动点,且直线PD,PC与平面α所成角相等,则二面角P﹣BC﹣D的余弦值的最小值是.参考答案:
【考点】二面角的平面角及求法.【分析】∠PBA为所求的二面角的平面角,由△DAP∽△CPB得出=,求出P在α内的轨迹,根据轨迹的特点求出∠PBA的最大值对应的余弦值.【解答】解:∵AD⊥l,α∩β=l,α⊥β,AD?β,∴AD⊥α,同理:BC⊥α.∴∠DPA为直线PD与平面α所成的角,∠CPB为直线PC与平面α所成的角,∴∠DPA=∠CPB,又∠DAP=∠CBP=90°∴△DAP∽△CPB,∴=.在平面α内,以AB为x轴,以AB的中垂线为y轴建立平面直角坐标系,则A(﹣2,0),B(2,0).设P(x,y),(y>0)∴2=,整理得(x+)2+y2=,∴P点在平面α内的轨迹为以M(﹣,0)为圆心,以为半径的上半圆.∵平面PBC∩平面β=BC,PB⊥BC,AB⊥BC,∴∠PBA为二面角P﹣BC﹣D的平面角.∴当PB与圆相切时,∠PBA最大,cos∠PBA取得最小值.此时PM=,MB=,MP⊥PB,∴PB=.cos∠PBA==.故答案为.15.若随机变量X的分布列为且E(X)=1,则a和b的值为.参考答案:a=b=1/3略16.右边程序运行后输出的结果是
.参考答案:b=
373217.从中得出的一般性结论是
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某家俱公司生产甲、乙两种型号的组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下:问该公司如何安排甲、乙二种柜的日产量可获最大利润,并且最大利润是多少?工艺要求产品甲产品乙生产能力/(台/天)制白坯时间/天612120油漆时间/天8464单位利润/元2024
参考答案:[解析]:设x,y分别为甲、乙二种柜的日产量,可将此题归纳为求如下线性目标函数Z=20x+24y的最大值.其中线性约束条件为
,由图及下表
(x,y)Z=20x+24y(0,10)240(0,0)0(8,0)160(4,8)272
Zmax=272
答:该公司安排甲、乙二种柜的日产量分别为4台和8台可获最大利润272元.
略19.(本小题满分12分)已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)设直线l的斜率为k,当线段AB的长等于5时,求k的值.(3)求抛物线y2=4x上一点P到直线2x-y+4=0的距离的最小值,并求此时点P的坐标。参考答案:由y2=4x,得p=2,其准线方程为x=-1,焦点F(1,0).设A(x1,y1),B(x2,y2).(1)|AF|=x1+,从而x1=4-1=3.代入y2=4x,得y=±2.∴点A为(3,2)或(3,-2)(2)直线l的方程为y=k(x-1).与抛物线方程联立,得,消去y,整理得k2x2-(2k2+4)x+k2=0(*),因为直线与抛物线相交于A、B两点,则k≠0,并设其两根为x1,x2,则x1+x2=2+.由抛物线的定义可知,|AB|=x1+x2+p=4+=5,解得k=±2(3)最小距离略。P(0.25,1)20.如图所示,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是菱形,,为的中点,(1)求证:∥平面;(2)求证:;(3)(文科)求三棱锥的体积.
(3)(理科)求直线与平面所成角的正切值.
参考答案:证明(1)连接AC交BD于为O,连接EO,∵E为PC的中点,O为AC的中点,在△PAC中,PA∥EO,,PA∥平面BDE,……………5分Ks5u(2)则为的中点,连接.
,.
……………6分是菱形,,是等边三角形.
………7分………8分平面………9分.平面,.……………10分(3)(文科)
,
是三棱锥的体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国电控阀放风阀试验台行业投资前景及策略咨询研究报告
- 2024年互联网软件项目可行性研究报告
- 2024至2030年震动式电子转速测速仪项目投资价值分析报告
- 外科护理气管插管术
- 医院公共应急预案
- 2024至2030年中国化工制品运输车行业投资前景及策略咨询研究报告
- 2024年液氮沉浸式速冻机项目可行性研究报告
- 2024年木制卫生筷子项目可行性研究报告
- 孕期破水应急处理方案
- 2024年中国细碎复摆颚式破碎机市场调查研究报告
- 2024年内蒙古电力集团招聘笔试参考题库含答案解析
- 麻醉药相关项目营销策略方案
- 30题战略规划岗位常见面试问题含HR问题考察点及参考回答
- 闸门槽施工方案
- 国家开放大学《供应链管理》形考作业1-4参考答案
- 科研伦理与学术规范
- 《艾滋病宣传教育》课件
- 学校人事工作个人总结
- 23秋国家开放大学《学前儿童音乐教育活动指导》形考任务1-4参考答案
- 小学校本课程-《海鸥又飞回来了》教学课件设计
- SGS 质量检验报告
评论
0/150
提交评论