




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
塑性力学到章屈服条件第一页,共一百零七页,编辑于2023年,星期二2、屈服函数屈服条件的数学表达简单拉伸:纯剪切:一般应力状态:各向同性静水压力不影响塑性变形第二页,共一百零七页,编辑于2023年,星期二P3
3、屈服面与屈服曲线屈服面——狭义:初始屈服函数的几何曲面广义:屈服函数的几何曲面(加载面)一个空间屈服面可以采用π平面上的屈服曲线表达4、屈服面的性质①垂直于平面的柱面123第三页,共一百零七页,编辑于2023年,星期二②屈服面在平面上的投影在每300分割段中都具有相似性(a)关于对称说明:材料各向同性,若在屈服面上,则也在屈服面上(b)关于对称说明:不考虑鲍辛格效应,若在屈服面上,则也在屈服面上③屈服曲线是封闭的包含原点的曲线;说明:坐标原点处于零应力状态,材料不可能在无应力的情况下屈服,所以原点应在屈服线内。屈服曲线是弹性状态的界限线,如果不封闭,则表示某些应力状态永远处于弹性状态,显然不可能。④从坐标原点作任一径向线必与屈服轨迹相交有且只有一次。第四页,共一百零七页,编辑于2023年,星期二3.2Tresca屈服条件和Mises屈服条件一、Tresca屈服条件
Tresca(1864)假设当最大剪应力达到某一极限值k时,材料发生屈服:用表示屈服函数x见P。28第五页,共一百零七页,编辑于2023年,星期二π平面x主应力空间第六页,共一百零七页,编辑于2023年,星期二Tresca屈服柱被平面所截后得到的图形。第七页,共一百零七页,编辑于2023年,星期二k的试验确定:纯剪切试验:简单拉伸试验:若材料满足Tresca屈服条件,则:第八页,共一百零七页,编辑于2023年,星期二二、Mises屈服条件
Tresca屈服条件有以下问题:没考虑中间主应力的影响;当应力处在屈服面的棱线上时,处理会遇到数学上的困难;主应力大小未知时,屈服条件十分复杂。因此,Mises(1913)提出了另一个屈服条件:应力偏张量的第二不变量达到某一定值时,材料就屈服。①、由等效应力可得到用等效应力表示的Mises条件:说明:第九页,共一百零七页,编辑于2023年,星期二②、屈服面的形状Mises屈服条件在平面上的一个圆,在应力空间是一个圆柱体。第十页,共一百零七页,编辑于2023年,星期二③、k的试验确定:简单拉伸试验:纯剪切试验:若材料满足Mises屈服条件,则:④、第十一页,共一百零七页,编辑于2023年,星期二⑤、Mises条件的物理解释:根据弹性理论,形状改变比能:所以Mises的物理解释:当形状改变比能或者八面体上的剪应力或者等效应力(应力强度)达到某一极限值时,材料才开始屈服。第十二页,共一百零七页,编辑于2023年,星期二⑥、平面,Tresca屈服条件与Mises屈服条件的关系:规定拉伸时一致:Tresca六边形内接于Mises圆第十三页,共一百零七页,编辑于2023年,星期二规定剪切时一致:Tresca六边形外切于Mises圆。画图验证!第十四页,共一百零七页,编辑于2023年,星期二三、比较两屈服准则的区别:①、Tresca屈服条件说明屈服只决定于最大最小主应力;Mises屈服条件考虑了中间应力,说明屈服条件和三个主应力都有关系;②、Tresca条件下Mises条件下试验表明,一般材料所以Mises条件更切实际。③、Mises条件与主应力有关,说明中间中主应力对屈服有影响,但在已知主方向和主应力大小顺序时,Tresca条件更方便些。第十五页,共一百零七页,编辑于2023年,星期二3.3屈服条件的实验验证一、Lode实验(1926)——薄壁管受拉力和内压的联合作用TTp由此上面的应力就是主应力。第十六页,共一百零七页,编辑于2023年,星期二改变T和p的取值,可以得到不同的Tresca条件:第十七页,共一百零七页,编辑于2023年,星期二Mises条件:第十八页,共一百零七页,编辑于2023年,星期二Tresca条件:Mises条件:试验结果表明,观测数据更接近Mises条件,但Tresca条件与Mises条件相差也不是很大,最大也不过0.154第十九页,共一百零七页,编辑于2023年,星期二二、Talor和Quinney实验(1931)-薄壁管拉力和扭矩的联合作用TMMTTresca条件:Mises条件:第二十页,共一百零七页,编辑于2023年,星期二Tresca条件:Mises条件:试验数据仍然密集在代表Mises条件的曲线附近,Mises条件得到了很好的验证。第二十一页,共一百零七页,编辑于2023年,星期二加例子啊??第二十二页,共一百零七页,编辑于2023年,星期二第四章塑性本构关系本章主要讨论应力点处于屈服面上,材料处于塑性状态,此时应力分量和应变分量所要满足的关系——塑性本构关系。第二十三页,共一百零七页,编辑于2023年,星期二4.1弹性应力—应变关系一、各向同性材料的弹性本构关系第二十四页,共一百零七页,编辑于2023年,星期二应力球张量与应变球张量之间的关系第二十五页,共一百零七页,编辑于2023年,星期二同理可得:又:所以广义虎克定律可以用指标表示成:第二十六页,共一百零七页,编辑于2023年,星期二应力偏张量与应变偏张量之间的关系说明:由于,所以(3)式只有五个方程独立,所以(3)必须联合才是广义虎克定律。第二十七页,共一百零七页,编辑于2023年,星期二2、为了将弹性本构方程与全量形式的塑性本构方程在形式上统一起来所以广义虎克定律体积变形是弹性的应力偏量与应变偏量成正比例,两者主方向一致等效应力与等效应变成正比第二十八页,共一百零七页,编辑于2023年,星期二3、卸载规律
当应力从加载面上卸载时,也服从虎克定律,但不能写成全量关系,只能写成增量形式:第二十九页,共一百零七页,编辑于2023年,星期二4.3全量型本构关系一、依留辛理论依留辛在实验研究的基础上,通过与弹性本构关系类比,将弹性变形的结论进行推广,提出各向同性材料在小变形条件下塑性变形规律的假设:(1)体积变形是弹性的(2)应力偏量与应变偏量相似且同轴说明:①应力和应变的定性关系:方向关系——两者主方向一致;分配关系——两者成比例。第三十页,共一百零七页,编辑于2023年,星期二②不是常数,它取决于质点的位置和荷载水平,但对于同一点同一载荷水平,是常数。③的求法:(3)等效应力与等效应变之间存在单值对应关系:第三十一页,共一百零七页,编辑于2023年,星期二综上所述,全量型的塑性本构方程为:说明:①形式与弹性本构方程一致;②区别在于:弹性:线性关系塑性:非线性关系③上式描述的全量应力-应变关系单值对应。第三十二页,共一百零七页,编辑于2023年,星期二二、全量理论的适应范围、简单加载定理1、全量理论的适用范围——小变形、简单加载条件下2、简单加载:在加载过程,材料内任一点的应力状态的各分量都按同一比例增加,即t—单调增大的正参数说明:①简单加载条件下,各主应力分量之间也是按同一比例增加,且应力主方向和应变主方向始终不变。②简单加载条件下,加载路径在应力空间是一条通过原点的直线,在平面上,是一条的射线。第三十三页,共一百零七页,编辑于2023年,星期二3、保证简单加载的条件①变形微小;②材料不可压缩,③外载荷成比例增长,如果有位移边界条件,只能是零位移边界条件;④曲线具有的幂函数形式。满足这四个条件即认为材料内每一单元体都处于简单加载状态——此即简单加载定理。说明:①③是必要条件,而②④是充分条件不一定是必要条件;不满足简单加载条件,全量理论一般不能采用,但是对于偏离简单加载条件不太远的情况,使用全量理论计算所获得的结果和实际结果也比较接近。第三十四页,共一百零七页,编辑于2023年,星期二三、卸载定理1、单轴拉伸卸载符合弹性规律:即:式中:为卸载前的应力、应变;卸载至时的应力和应变;为卸载过程中应力和应变的改变量。2、复杂应力状态的卸载,若为简单卸载则按弹性规律变化。第三十五页,共一百零七页,编辑于2023年,星期二在简单卸载情况下:按弹性力学公式可以计算出对应的,则卸载后当时,为残余应力、残余应变。注:上述计算方法只适用于卸载过程不发生第二次塑性变形的情形,即卸载不引起应力符号改变而达到新的屈服(即卸载不发生反向屈服)。第三十六页,共一百零七页,编辑于2023年,星期二4.5理想塑性材料的增量型本构关系增量理论又叫流动理论一、Levy-Mises理论又称刚塑性增量理论假设材料为理想塑性的,并认为材料到达塑性区,总应变等于塑性应变,即假设材料符合刚塑性模型。即理论假设归纳如下:①在塑性区总应变等于塑性应变(忽略弹性应变部分)②体积变形是弹性的体积不可压缩第三十七页,共一百零七页,编辑于2023年,星期二③的求法。3、塑性应变增量的偏量与应变偏量成正比例,或应力偏量主方向与塑性应变偏量的主方向一致:式中比例系数决定于质点的位置和荷载水平因为塑性变形的体积不可压缩忽略弹性应变部分说明:①应变增量与应力偏量主轴重合;②应变增量的分量与应力偏量的分量成比例;按Mises条件:第三十八页,共一百零七页,编辑于2023年,星期二等效塑性应变增量理想刚塑性材料的增量型本构方程第三十九页,共一百零七页,编辑于2023年,星期二写成一般方程式:说明:①当已知,则已知可求,但不能确定,所以不能确定;②已知能求,上式只能求得各分量的比值,不能求得的数值。因为理想塑性材料在一定应力下,塑性变形可以任意增长。第四十页,共一百零七页,编辑于2023年,星期二二、Prandtl-Reuss理论又称弹塑性增量理论Prandtl-Reuss理论是在Levy-Mises理论的基础上发展起来的,该理论考虑了弹性变形部分,即总应变增量偏量由弹性和塑性两部分组成。弹性应变部分塑性应变部分第四十一页,共一百零七页,编辑于2023年,星期二仍由Mises屈服条件确定,根据Mises条件第四十二页,共一百零七页,编辑于2023年,星期二定义形状改变比能增量.Prandtl-Reuss理论推导的增量型本构关系:或第四十三页,共一百零七页,编辑于2023年,星期二②已知和不能求出,只能求得各分量的比值。Prandtl-Reuss理论推导的增量型本构关系:说明:①当和已知,可计算出,可求和将它们叠加原有的应力水平即得新的应力水平。其中定义为形状改变比能增量.第四十四页,共一百零七页,编辑于2023年,星期二三、两种增量理论的比较1、Prandtl-Reuss理论考虑了弹性变形,Levy-Mises理论则没有考虑,L理论是P理论的特殊情况。2、两理论都着重指出了的关系:OSMises条件下第四十五页,共一百零七页,编辑于2023年,星期二3、在整个变形过程中,可由各瞬时时段的变形积累而得,因此增量理论能表达加载过程对变形的影响,能反映复杂的加载情况。4、增量理论仅适用加载情况,卸载情况下仍按虎克定律进行。四、增量理论的实验验证洛德曾做了薄壁圆管受内压和拉伸联合作用的实验,他引用了如下参数:如果增量理论假设是正确的,则应存在洛德实验结果表明大致成立的。第四十六页,共一百零七页,编辑于2023年,星期二泰勒和奎乃也曾用多种金属材料做了薄壁圆管受扭和拉伸作用的实验,实验结果表明和的主轴误差不超过,也大致成立。第四十七页,共一百零七页,编辑于2023年,星期二4.6弹塑性强化材料的增量型本构关系对于弹塑性强化材料,若采用等向强化模型,其强化条件通常采用沿着应变路径积分的等效塑性应变增量来描述,即:Mises条件下只有当塑性应变增量各分量之间的比例在整个加载过程中始终保持不变,即各分量按同一比例增大,才有。第四十八页,共一百零七页,编辑于2023年,星期二简单加载条件下:此时表示曲线某点的斜率与Levy-Mises理论类似可求得:第四十九页,共一百零七页,编辑于2023年,星期二得到弹塑性强化材料的增量型本构关系:将代入Prandtl-Reuss理论或写成第五十页,共一百零七页,编辑于2023年,星期二复习:全量理论或写成1、2、增量理论理想刚塑性理论1)、Levy-Mises理论第五十一页,共一百零七页,编辑于2023年,星期二2)、Prandtl-Reuss理论或写成理想弹塑性材料第五十二页,共一百零七页,编辑于2023年,星期二3)、弹塑性强化材料——等向强化或写成说明:三个增量理论最根本的区别是不一样。第五十三页,共一百零七页,编辑于2023年,星期二汉盖Hency依留辛列维-米赛斯表1全量理论与增量理论比较表弹性应变塑性应变应力-应变关系泊松比应变大小加载条件屈服条件考虑的材料理论建立年代纳达依幂强化材料1943年不考虑大应变强化材料1937年普朗特-劳埃斯增量(每个瞬间是小应变)增量(每个瞬间是小应变)复杂加载复杂加载理想刚塑性理想弹塑性列维1871年米赛斯1913年普朗特1924年劳埃斯1930年第五十四页,共一百零七页,编辑于2023年,星期二1.薄壁圆筒承受内压作用,半径为r,壁厚为t。假设圆筒的材料是不可压缩的。试求圆筒完全进入塑性状态后,主应变之间的比值。2.薄壁圆筒承受内压作用,半径为r,壁厚为t。圆筒的屈服极限为。若使圆筒保持直径不变,只产生轴向伸长,并假设材料是不可压缩的。试求达到塑性状态时的内压。3.薄壁圆筒承受轴向拉力P和内压p作用,圆筒内径为d,壁厚为t。满足体积不可压缩条件。圆筒的屈服极限为.若使圆筒的直径保持不变,试求轴向力P。第五十五页,共一百零七页,编辑于2023年,星期二4.8塑性势及流动法则一、Drucker公设简单加载时,材料的后继屈服极限在变形过程中是不断变化的,其应力-应变曲线可以有下面的三种形式:稳定材料不稳定材料不可能附加应力对附加应变作功为非负附加应力对附加应变作功为负(非必要条件)第五十六页,共一百零七页,编辑于2023年,星期二1(4)231423Drucker将第一种情况推广到复杂应力状态下,得到塑性力学中十分重要的公设,即Drucker公设:附加应力在应力循环内作塑性功非负:单轴下应力循环注意附加应力功是假想的功复杂应力状态下应力循环第五十七页,共一百零七页,编辑于2023年,星期二
Drucker公设其他描述:在整个应力循环中,只有应力达到时才产生在循环的其他部分不产生塑性变形。上述积分可变成:第五十八页,共一百零七页,编辑于2023年,星期二两个重要不等式:2)、当1点位于屈服面上,则最大塑性功原理即实际应力所做的塑性功总是大于等于静力可能应力所做的塑性功。1)、当1点位于屈服面内,则,略去高阶微量第五十九页,共一百零七页,编辑于2023年,星期二二、两个重要结论(1)屈服面的外凸性屈服面的外凸性应力空间与塑性应变空间的坐标重合,并将的原点放在位于屈服面上的点处。过A点做一超平面,则上式成立的条件,即要求A0必须始终位于超平面一侧,这就要求加载面是外凸。
第六十页,共一百零七页,编辑于2023年,星期二塑性应变增量的正交性(2)塑性应变增量方向与屈服面的法向平行(正交流动法则)若加载面在A点的外法线方向,塑性应变增量必须沿着外法线方向即与方向重合,否则的总可以找到A0使不成立。塑性应变增量的正交流动法则第六十一页,共一百零七页,编辑于2023年,星期二说明只有应力增量指向加载面外部时才能产生塑性变形,这就是前面的加载准则。三、塑性势理论在弹性力学,弹性应变与弹性应变能密度U之间有如下关系:式中U为数学中的势函数,所以又称弹性势函数。第六十二页,共一百零七页,编辑于2023年,星期二Mises条件下:Mises用类比的方法,提出了塑性势的概念:塑性势理论g-塑性势函数若g=f,则Levy-Mises方程说明:对于光滑的屈服面来说,所有的塑性应变增量的方向根据正交性法则都是唯一确定,但是如果屈服面不是光滑的,如Tresca屈服面的尖点上塑性应变增量的方向是有变化的,其变化范围介于N1和N2之间。π平面N1N2第六十三页,共一百零七页,编辑于2023年,星期二薄壁圆管承受轴向拉力和扭矩作用,圆管由不可压缩的弹性材料制成,按下列加载路线,试用普朗特-劳埃斯方程计算管中内力。第六十四页,共一百零七页,编辑于2023年,星期二第六十五页,共一百零七页,编辑于2023年,星期二第六十六页,共一百零七页,编辑于2023年,星期二第六十七页,共一百零七页,编辑于2023年,星期二第六十八页,共一百零七页,编辑于2023年,星期二第5章梁的弹塑性弯曲第六十九页,共一百零七页,编辑于2023年,星期二第七十页,共一百零七页,编辑于2023年,星期二一、假设和屈服条件§5-1梁的弹塑性弯曲对于具有两个对称轴的等截面梁,荷载作用于纵向对称平面内,可采用材料力学中梁弯曲理论的一般假设:1)、变形前垂直于梁轴的平面,在变形后仍保持为垂直于弯曲梁轴的平面,即平截面假设;2)、不计各层间的相互挤压;3)、小变形,即挠度比横截面的尺寸小得多;4)、梁跨长比横向尺寸大得多。
根据上述假设,只考虑梁横截面上正应力对材料屈服的影响,用Tresca和Mises条件均为:
=
第七十一页,共一百零七页,编辑于2023年,星期二二、梁的纯弯曲
如图所示,研究具有两个对称轴的等截面梁,设y、z为横截面的对称轴,x为梁的纵轴,xoy为弯曲平面。
ZyZyh/2h/2MM1、理想弹塑性材料
纯弯曲时,随着弯矩M的增加,塑性变形由梁截面边缘对称地向内部发展,在梁的任一横截面上弹性区和塑性区是共存的。在弹性区,应力按线性分布;在塑性区,应力按分布;而在两者的交界处,正应力应等于屈服应力。
第七十二页,共一百零七页,编辑于2023年,星期二1)对于理想弹塑性材料,在塑性区,则沿横截面高度,应力分布为:
式中,(>0)为横截面的中性层到弹、塑性分界面的距离。
yZ塑性区弹性区-+第七十三页,共一百零七页,编辑于2023年,星期二2)M=M(ys)函数关系纯弯曲横截面上应力应满足轴力为零的条件由于Z为横截面的一条对称轴,上式自动满足,否则将由这个条件确定中性轴的位置,横截面上的正应力还应满足:即:可以简写成:第七十四页,共一百零七页,编辑于2023年,星期二其中为弹性区对中性轴的惯性矩;为塑性区对中性轴的静矩3)、弹性极限弯矩、塑性极限弯矩此式确定M与ys的关系关于梁的挠度,对弹性区而言,有:第七十五页,共一百零七页,编辑于2023年,星期二在弹性区的边界上的
处,代入上式,梁轴曲率半径为:
考虑到梁的曲率与梁挠度的关系,有:则得梁轴的挠曲线方程为:第七十六页,共一百零七页,编辑于2023年,星期二取梁的横截面是高h、宽为b的矩形,则有:将他们代入则得出:即得梁刚开始产生塑性变形时的弹性极限弯矩为:第七十七页,共一百零七页,编辑于2023年,星期二如果令,即表示梁截面全部进入塑性状态,此时的弯矩称为塑性极限弯矩:而有:说明梁截面由开始屈服到全部屈服,还可以继续增加50%的承载能力,由此也可以看出按塑性设计可以充分发挥材料的作用。第七十八页,共一百零七页,编辑于2023年,星期二利用和得:设与对应的曲率半径,此时,由此可得:第七十九页,共一百零七页,编辑于2023年,星期二纯弯梁屈服后的曲率半径与弯矩M之间的关系而在屈服前,它们服从线性的弹性关系,即满足:第八十页,共一百零七页,编辑于2023年,星期二根据屈服前屈服后绘出弯矩与曲率的变化曲线,如图所示:0123450.511.5第八十一页,共一百零七页,编辑于2023年,星期二4)、卸载规律梁在达到塑性极限弯矩以后全部卸载,则在梁内存在残余应力。应用卸载定律,可以计算此残余应力。卸载过程中弯矩改变值为利用此值按弹性计算即得应力改变量为卸载前的应力为:则残余应力为:前正负号:y>0时取正,y<0取负第八十二页,共一百零七页,编辑于2023年,星期二前正负号:y>0时取正,y<0取负,残余应力沿截面高度分布情况如图所示。(a)--+(b)-+=+-第八十三页,共一百零七页,编辑于2023年,星期二2、线性强化弹塑性材料+-弹性区塑性区yZ强化阶段则有:根据平截面假设,应有:第八十四页,共一百零七页,编辑于2023年,星期二+-yZ弹性区塑性区第八十五页,共一百零七页,编辑于2023年,星期二得与的关系第八十六页,共一百零七页,编辑于2023年,星期二其中为弹性区对中性轴的惯性矩;为塑性区对中性轴的静矩为塑性区对中性轴的惯性矩;梁横截面为b×h的矩形,则有:第八十七页,共一百零七页,编辑于2023年,星期二此式为矩形截面线性强化弹塑性M与ys的关系第八十八页,共一百零七页,编辑于2023年,星期二三、梁的横力弯曲梁在横向载荷作用下的弯曲比纯弯曲复杂。采用上述的假设和屈服条件,针对纯弯曲导出的有关结果基本上适用。纯弯曲是常数横力弯曲应力只沿高度方向变化应力不仅沿高度方向变化,还沿长度方向变化弹性区高度是常数第八十九页,共一百零七页,编辑于2023年,星期二纯弯曲横力弯曲受均布载荷作用理想弹塑性材料的矩形截面梁ABq第九十页,共一百零七页,编辑于2023年,星期二AB应力分布第九十一页,共一百零七页,编辑于2023年,星期二整理一下可以得:式中:梁跨中截面开始屈服时的载荷,即梁的弹性极限载荷,可令(1)式中x=0
得:(2)式(2)表明梁中的弹塑性交界线是一双曲线。第九十二页,共一百零七页,编辑于2023年,星期二ABxyqABxyq在梁跨中截面全部进入塑性状态时,产生无限制的塑性流动,相当于在跨中安置了一个铰,称为塑性铰。塑性铰的定义:塑性铰与结构铰的区别:
①、塑性铰与弯矩大小有关塑性铰的出现是因截面上的弯矩达到了塑性极限弯矩,并由此产生转动。②、结构铰处总有M=0,不能传递弯矩第九十三页,共一百零七页,编辑于2023年,星期二塑性铰的出现,使得梁成为几何可变的,丧失了继续承载的能力。此时对应的载荷称为塑性极限载荷。可令(1)式中x=0
得:与弹性极限载荷相比③、结构铰为双向铰,即可以在两个方向上产生相对转动,而塑性铰处的转动方向必须与塑性极限弯矩的方向一致,所以塑性铰为单向铰;④、卸载后塑性铰消失,由于存在残余变形,结构不能恢复原状;而结构铰不变。第九十四页,共一百零七页,编辑于2023年,星期二四、梁的弹塑性挠度由前面的分析可知,按照塑性极限状态设计,梁可以充分发挥材料的潜力。但梁是否会因变形过大而不能使用,则需要研究梁在弹塑性阶段的变形。在此阶段中,梁的变形仍受到弹性区的限制,因此塑性区的变形仍处于约束变形阶段。以理想弹塑性材料矩形截面(b×h)梁为例,横力弯曲时仍仅考虑弯矩引起的变形.纯弯曲横力弯曲第九十五页,共一百零七页,编辑于2023年,星期二以悬臂梁为例,设梁处于弹塑性极限状态,固定端弯矩,截面弯矩为从而有:即:OyaP第九
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡镇医院设备采购合同样本
- 农村物流转让合同标准文本
- 传媒公司活动合同样本
- 供应配件合同样本
- 2025企业装饰设计合同
- 修车场转让合同标准文本
- 个人超市打工做饭合同标准文本
- 2025劳动合同中乙方可以委托人签字吗
- 公司居间合同样本
- 2025年合同终止的几种情形
- 小学创建“五好”学校关工委实施方案
- 2025届河南省五市高三第一次联考生物试题(原卷版+解析版)
- 2025年安徽九华山旅游发展股份有限公司招聘66人笔试参考题库附带答案详解
- 统编版2024~2025学年度六年级语文第二学期期中测试卷(有答案)
- 排水运维技巧培训课件
- 多发性硬化课件
- 2019全国中学生生物学联赛试题详解
- 2025年职业指导师专业能力测试卷:职业心理健康与心理测评试题
- 安徽省蚌埠市2024-2025学年高三(下)第二次质检物理试卷(含解析)
- 2025届山东省菏泽市高三下学期一模政治试题及答案
- 乒乓球爱好者如何制定乒乓球训练计划
评论
0/150
提交评论