版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Continuousanddiscretetimesignals
Twobasictypesofsignals:Continuoussignals:Theindependentvariableiscontinuousandsignalsaredefinedforacontinuousvaluesoftheindependentvariable.x(t)tContinuousanddiscretetimesignalsDiscretesignalsx[n]:aredefinedonlyatdiscretetime,indepen-dentvariabletakesononlyadiscretesetofvalues.Note:x[n]isdefinedonlyforintegervaluesoftheindependentvariable.x[n]012345678nContinuousanddiscretetimesignalsForexample:AresistorRwithv(t)andi(t),theinstantaneouspoweris
ThetotalenergyexpendedoverthetimeintervalisContinuousanddiscretetimesignalsandtheaveragepoweroverthisintervalisSimilarlyforanyx(t)oranyx[n],thetotalenergyisdefinedasorWheredenotesthemagnitudeofx.ContinuousanddiscretetimesignalsSimilarly,thetotalpowerisdefinedasOrOverinfinitetimeinterval(or)1n2n(1.6)(1.7)Continuousanddiscretetimesignals
Withthesedefinitions,wecanidentifythreeimportantclassesofsignals:,Energysignal
(2),Powersignal(3),Infiniteenergyandpowersignal(1.8)(1.9)TransformationsofindependentvariableExampleoftransformationsTimeshiftingtx(t-t0)0t0110tx(t)012341x[n]n
-101231x[n+1]nTransformationsofindependentvariableTimereversal:
x[n]x[-n]:
x(t)x(-t)x(1-t)011t-4-3-201nx[-n]-1012341x[n]n01-1t011tTransformationsofindependentvariableTimescalingx(t)x(2t)compressedx(t)x(t/2)stretchedx(t)x(2t)x(t/2)tttTransformationsofindependentvariableLetIfcompressedstretchedreversedshiftedExample1.1Giventhesignalx(t),toillustratex(t+1),x(-t+1),x(3t/2),x(3t/2+1)··0211tx(t)Transformationsofindependentvariablex(-t+1)=x[-(t-1)]01-1t1x(t+1)=x[(t+2/3)]-2/32/30t···1··0211tx(t)-10121tx(t+1)0-21-1tx(-t)··02/34/3tx(3t/2)1x(-t+1)x(3t/2+1)TransformationsofindependentvariableExample:Adiscretesignalx[n]isshowninFigureSketchandlabelfollowingsignals:
(1)x[2n];(2)x[2n+1].2-4-201234x[n]n0.511.5-0.5-1-1.5-2TransformationsofindependentvariableAssignments:P57:1.4,a,eP59:1.21,d,f-2n-1-2-1012x[2n]121.52024-4-2x[n]n0.51-0.5-1-1.5-2n21.5-1.5-1-2-101x[2n+1]12TransformationsofindependentvariablePeriodicsignalsForallvaluesoft,x(t)=x(t+T)(1.11)thenx(t)isperiodicwithperiodT.ThefundamentalperiodTofx(t)isthesmallestpositivevalueofTforwhichEq.(1.11)holds.-T0Ttx(t)……Transformationsofindependentvariablex[n]:x[n]=x[n+N](1.12)
N—somepositiveinteger.
fundamentalperiodisN=3……x[n]0123nTransformationsofindependentvariableEvenandOddSignalsEvensignals:x(-t)=x(t)x[-n]=x[n]Symmetryontheverticalaxis.Oddsignals:x(-t)=-x(t)x[-n]=-x[n]Symmetryontheorigin.x(t)0t0tx(t)TransformationsofindependentvariableAnysignalcanbebrokenintoasumoftwosignals,oneofwhichisevenandoneofwhichisodd.
Transformationsofindependentvariablex[n]…0123n1=-2Ev{x[n]}+-3–2-1Od{x[n]}+t1/2-1/2xo(t)0123-1n1…1/21230n1/2=t1/2xe(t)t1x(t)ExponentialandsinusoidalsignalsContinuouscomplexexponentialandsinusoidalsignalsComplexexponentialwherecandaare,ingeneral,complexnumbers.
(1)Realexponentialsignal(candaarereal)
a>0,ast↑,↑
a<0,ast↑,↓
a=0,isconstant
Exponentialandsinusoidalsignals
(2)Periodiccomplexexponentialandsinusoidalsignals
aisconstrainedpurelyimaginary
itisperiodicandfundamentalperiod
Exponentialandsinusoidalsignals
Asignalcloselyrelatedtotheperiodiccomplexexponentialisthesinusoidalsignal
andprovideimportantexamplesofsignalswithinfinitetotalenergybutfiniteaveragepower.ExponentialandsinusoidalsignalsbutAperiodsignalisapowersignal.Exponentialandsinusoidalsignals
(3)Generalcomplexexponentialsignals
If
Thenr=0,x(t)isperiodic,ReandImaresinusoidal.
r>0andr<0,x(t)isaperiodic.ExponentialandsinusoidalsignalsExample:determinewhetherornoteachofthefollowingsignalsisperiodic.Ifsignalisperiodic,determineitsT0.
(a)periodic(b)nonperiodic(c)periodicExponentialandsinusoidalsignals(d)
IfT01andT02havesmallestcommonmultiple(SCM),thentheSCMisfundamentalperiodT0.ExponentialandsinusoidalsignalsDiscrete–timecomplexexponentialandsinusoidalsignalsAsincontinuous,animportantsignalindiscreteiscomplexexponentialsignalor
sequence:
candaare,ingeneral,complexnumbers.ExponentialandsinusoidalsignalsRealexponentialsignals
(wherecandareal)|a|>1,asn,x[n]exponentially|a|<1,asn,x[n]exponentially
a>0,allvaluesofx[n]havesamesign.
a<0,thenthesignofx[n]alternates.
a=0,x[n]isaconstant.ExponentialandsinusoidalsignalsSinusoidalsignals
Asbefore,Euler’srelationallowsustorelatecomplexexponentialwithsinusoidal.ThensinusoidalsignalscanbepresentedasGeneralcomplexexponentialsignals(omit)
ExponentialandsinusoidalsignalsPeriodicitypropertiesofdiscrete-timecomplexexponentialsWewillseethattherearethreedefinitedifferencebetweenanditscounterpart
(1)Exponentialandsinusoidalsignals
(2)Forthe,thelargerthemagnitudeof0,thehigheristherateofoscillationinthesignal.
Forthe,thelow-frequencyhavevaluesof0near0,2,andanyotherevenmultipleof,whilethehighfrequencyarelocatednear0andotheroddmultiplesof.(3)
ej0tisperiodicforanyvalueof0,whileejk0nmaynotperiodicforany0Exampleisperiodic,T0=2/3,howeverisnonperiodicExponentialandsinusoidalsignals(4)Theperiodof
InorderfortobeperiodicwithN>0,mustorequivalently0N
mustbeamultipleof2,Thatis,theremustbeanintegermsuchthat0N=2morequivalently0/2=m/NExponentialandsinusoidalsignalsIf00and0/2isarationalnumber,ej0nisperiodicandisnotperiodicotherwise.IfNandmhavenofactorsincommon,thenfundamentalperiodisN.∵fundamentalfrequencyis
2/N=0/mfundamentalperiodis
N=m(2/0)whereN>0andmaresomeintegers.ExponentialandsinusoidalsignalsExample:(a)
x[n]=cos(2n/12)periodicN=12(b)
x[n]=cos(8n/31)periodicN=31(c)x[n]=cos(n/6)nonperiodic(d)
x[n]=exp(j(2/3)n)+exp(j(3/4)n)N=24Inthecontinuouscase,alloftheharmonicallyrelatedcomplexexponentialsejk0t,k=0,1,2…,aredistinct.Table1.1Comparisonofej0tand
ej0n
ej0nej0tPeriodicforany0Onlyif0=2m/NforsomeintegersN>0andmDistinctsignalsfordistinct0
Identicalsignalsforvaluesof0separatedbymultiplesof2fundamentalfrequency00mfundamentalperiod2/
0N=m(2/
0)Assignments:1.10,1.11,1.25cf,1.26beTheunitimpulseandunitstepfunctionsThediscreteunitimpulseandunitstepsequenceUnitimpulse(unitsample)isdefinedas0-11n1[n]Unitstepdefinedby01nu[n]…TheunitimpulseandunitstepfunctionsTheimpulseisthefirstdifferenceofthestep.Conversely,thestepistherunningsum
ofunitsample.Theunitimpulseandunitstepfunctions
ThereissamplingpropertymoregenerallyContinuousunitstepandunitimpulsefunctionUnitstepThecontinuousunitstepu(t)istherunningintegralofunitimpulse(t).(t)thefirstderivativeofu(t)1t0u(t)Continuousunitstepandunitimpulsefunction10tAndthefollowedexampleshowedushowwecanget
C1Fi(t)+-u(t)Continuousunitstepandunitimpulsefunction1t0u(t)t0i(t)=du/dtnodefinition1t0u(t)t0du/dt1/00t10tContinuousunitstepandunitimpulsefunction1t0u(t)1t0u(t)t0du/dt1/10tnote:Aswiththe[n],the(t)alsohasaveryimportantsamplingproperty:(t)andu(t)aresingularityfunctions.
Example1.7
Givensignalx(t):-1121234x(t)tContinuousunitstepandunitimpulsefunctionContinuousunitstepandunitimpulsefunctioncalculateandsketchthex’(t);recoverx(t)fromx’(t).
Solution:-1121234x(t)t-3121234x’(t)tContinuousunitstepandunitimpulsefunctionExample(seeproblem1.38)(1)Showthat(2)determine
(1)Consider:t1/(t)t/21/(2t)ContinuousunitstepandunitimpulsefunctionAssignmentsP58:1.13,1.14,1.21(f)ContinuousanddiscretesystemsInputandoutputarecontinuous.Inputandoutputarediscrete.x(t)continuousy(t)x[n]discretey[n]SimpleexamplesofsystemsContinuoussystems—differentialequation.Discretesystems—differenceequation.Example1.10Lety[n]denotethebalanceattheendofthenthmonth,x[n]representsthenetdepositduringthenthmonthandinteresteachmonthis1%,Thentheequationis
y[n]=1.01y[n-1]+x[n]
ory[n]-1.01y[n-1]=x[n]InterconnectionofsystemsSeries(orcascade),parallel,feedbackin
12out
1in2+outseriesparallelInterconnectionofsystemsSeries-parallelin123+4outin+12outfeedbackSystemproperties:memoryormemorylessIfitsoutputisdependentonlyoninputatthatsametime—memoryless.Theconceptofmemorycorrespondstothepresenceinthesystemthatretainsorstoresinformationaboutinputvaluesattimesotherthanthecurrenttime.Examples:Memoryless(identitysystem)Memory
(Accumulatororsummer)
(delay)
(integrator)Systemproperties:memoryormemorylessSystemproperties:invertibilityandinverseAsystemissaidtobeinvertibleifdistinctinputsleadtodistinctoutputs.Ifasystemisinvertible,thenaninversesystemexists,whencascadedwiththeoriginalsystem,yieldanoutputw[n]equaltothex[n].invertiblex[n]systemy[n]inversesystemw[n]=x[n]AnexampleAnotherexample—accumulatorThedifferencebetweentwosuccessiveoutputvaluesispreciselyinputvalue:x(t)y(t)=2x(t)y(t)w(t)=y(t)/2w(t)=x(t)Systemproperties:invertibilityandinverse∴theinversesystemisExamplesofnoninvertiblesystemsare
andand∵
andsamex[n]y[n]w[n]=y[n]-y[n-1]w[n]=x[n]Sy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品安全突发事件应急演练
- 唱唱我的名教案反思
- 倍的认识教案
- 核心素养下英语说课稿
- 艺术家工作室买卖合同样本
- 眼镜审批权限规范
- 河道整治防洪渠施工合同
- 矿产仓库租赁协议范本
- 建筑质保金合同样本
- 能源安防施工合同
- 产品可追溯流程图
- 班主任带班育人方略ppt
- 哈弗F7x保养手册
- 中级经济师《中级运输经济》历年真题汇编(共288题)
- Unit 3 Its a pineapple Lesson 13 (说课稿)-2022-2023学年英语四年级上册
- 执行依据主文范文(通用4篇)
- 为老年人提供合理营养与平衡膳食 为老年人编制营养食谱食物交换份法
- 非政策性退补1
- 中级主管护师考试历年真题及答案
- 学习解读《医疗保障基金使用监督管理条例》PPT课件(带内容)
- 《普通高中生物学课程标准》(WORD版)
评论
0/150
提交评论