版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相关系数计算公式相关系数计算公式StatisticalcorrelationcoefficientDuetothestatisticalcorrelationcoefficientusedmorefrequently,sohereistheuseofafewarticlesintroducethesecoefficients.Thecorrelationcoefficient:astudyoftwothings(inthedatawecallthedegreeofcorrelationbetweenthevariables).Iftherearetwovariables:X,Y,correlationcoefficientobtainedbythemeaningcanbeunderstoodasfollows:(1),whenthecorrelationcoefficientis0,XandYtwovariablerelationship.(2),whenthevalueofXincreases(decreases),Yvalueincreases(decreases),thetwovariablesarepositivecorrelation,correlationcoefficient(3),whenthevalueofXincreases(decreases),thevalueofYdecreases(increases),twovariablesarenegativelycorrelated,thecorrelationcoefficientbetween-1.00and0.Theabsolutevalueofthecorrelationcoefficientisbigger,strongercorrelations,thecorrelationcoefficientiscloseto1or-1,thehigherdegreeofcorrelation,thecorrelationcoefficientiscloseto0andthecorrelationisweak.Therelatedstrengthnormallythroughthefollowingrangeofjudgmentvariables:Thecorrelationcoefficient0.8-1.0strongcorrelation0.6-0.8strongcorrelation0.4-0.6mediumdegree.0.2-0.4weakcorrelation0.0-0.2veryweaklycorrelatedornotcorrelatedPearson(Pearson)correlationcoefficientPearsonisalsoknownasthecorrelation(orcorrelation)isakindofcalculationmethodofthelinearcorrelationofBritishstatisticianPearsonintwentiethCentury.SupposetherearetwovariablesX,Y,thenthePearsoncorrelationcoefficientbetweenthetwovariablescanbecalculatedbythefollowingformula:Aformula:Formulatwo:Formulathree:Formulafour:Fourequivalentformulaslistedabove,whereEisthemathematicalexpectation,covsaidthecovariance,Nrepresentsthenumberofvariables.2,scopeofapplicationWhenthetwovariablesofthestandarddeviationisnotzero,thecorrelationcoefficientisdefined,thecorrelationcoefficientforPearson:(1),isthelinearrelationshipbetweenthetwovariables,arecontinuousdata.(2)overall,twovariablesarenormallydistributed,ornearnormalunimodaldistribution.(3)andtheobservationvaluesoftwovariablesisinpairs,eachpairofobservationsareindependentofeachother.PearsoncorrelationcoefficientMatlab(accordingtotheformulafour):[cpp]viewplaincopyFunctioncoeff=myPearson(X,Y)%ofthefunctionoftherealizationofthePearsoncorrelationcoefficientcalculatingoperation%%X:numericalsequenceinput%Y:numericalsequenceinput%%output:%coeff:twoinputnumericalsequenceX,thecorrelationcoefficientofY%Error(two'numericalsequencedimensionisnotequalto');Coeff=fenzi/fenmu;End%myPearsonendfunctionCalculatethePearsoncorrelationcoefficientfunctioncanalsobeusedin[cpp]viewplaincopy4,referencecontentSpearmanRank(Spielmanrankcorrelationcoefficient)Instatistics,SpielmancorrelationcoefficientisnamedforCharlesSpearman,andoftenusetheGreeksymbol(rho)saiditsvalue.SpielmanrankcorrelationcoefficientisusedtoestimatethecorrelationbetweenthetwovariablesXandY,thecorrelationbetweenvariablescanbeusedtodescribethemonotonefunction.Ifthetwosetsoftwovariabledoesnothavethesametwoelements,so,whenoneofthevariablescanbeexpressedasamonotonefunctionwellwhenanothervariable(i.e.changesintwovariablesofthesametrend),betweenthetwovariablescanreach+1or-1.SupposethattworandomvariableswereX,Y(alsocanbeseenasasetoftwo),thenumberoftheirelementsareN,twoI(1<=i<=N)randomvariablestakevaluesrespectivelywithXi,Yisaid.SortofX,Y(atthesametimeasascendingordescending),tworankingelementssetX,y,Xi,YielementswhichareXiinXandYirankingintheYranking.ThecollectionofX,yelementsinthecorrespondingsubtractiontogetalistofdifferencesetD,di=xi-yi,1<=i<=N.SpielmanrankcorrelationcoefficientbetweenrandomvariablesXandYcanbeobtainedbyX,yorDcalculation,thecalculationmethodsareasfollows:ByrankingdifferencecalculatedfromDdiversity(formulaone):FromthetopsetX,calculatedfromY(SpielmanrankcorrelationcoefficientwerealsoconsideredafterrankingtworandomvariablesPearsoncorrelationcoefficient,thefollowingistheactualPearsoncalculatedthecorrelationcoefficientX,y)(formulatwo):Thefollowingisasetofelementsinthelistofexamplesofcalculation(calculatedonlyforSpielmanrankcorrelationcoefficient)Note:whenthetwovariablesofthesame,theirrankingisobtainedbytheaverageoftheirpositions.2,scopeofapplicationSpielmanrankcorrelationcoefficientofthedataconditionswithoutPearsoncorrelationcoefficientisstrict,aslongastheobservedvaluesoftwovariablesortransformedbycontinuousvariabledataleveldata,regardlessoftheoveralldistributionofthetwovariablesoftheform,thesizeofthesample,wecanuseSpielmancorrelationthecoefficientof.Asourceprogram:SpielmanrankcorrelationcoefficientMatlab(basedonrankingdifferencediversityDcalculatedusingtheaboveformula)[cpp]viewplaincopyFunctioncoeff=mySpearman(X,Y)%ofthefunctionusedtoachievecomputingSpielmanrankcorrelationcoefficient%%X:numericalsequenceinput%Y:numericalsequenceinput%%output:%coeff:twoinputnumericalsequenceX,thecorrela
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度出租车承包运营人力资源配置合同3篇
- 2025年度智能电网建设与运营管理协议4篇
- 2025年度数字化车间承包经营合作协议4篇
- 方形母端快接式端子行业深度研究报告
- 2025年叉车电器项目可行性研究报告
- 2025年度个人股权分割与转让合同范本3篇
- 2025年度个人心理咨询服务合同范本4篇
- 2025年度个人房源信息在线交易安全保障协议4篇
- 2025年江苏国经控股集团有限公司招聘笔试参考题库含答案解析
- 2025年福建中闽海上风电有限公司招聘笔试参考题库含答案解析
- 家庭年度盘点模板
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
- 饲料厂现场管理类隐患排查治理清单
- 【名著阅读】《红岩》30题(附答案解析)
- Starter Unit 2 同步练习人教版2024七年级英语上册
- 分数的加法、减法、乘法和除法运算规律
- 2024年江苏鑫财国有资产运营有限公司招聘笔试冲刺题(带答案解析)
- 2024年辽宁石化职业技术学院单招职业适应性测试题库含答案
评论
0/150
提交评论