




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相关系数计算公式相关系数计算公式StatisticalcorrelationcoefficientDuetothestatisticalcorrelationcoefficientusedmorefrequently,sohereistheuseofafewarticlesintroducethesecoefficients.Thecorrelationcoefficient:astudyoftwothings(inthedatawecallthedegreeofcorrelationbetweenthevariables).Iftherearetwovariables:X,Y,correlationcoefficientobtainedbythemeaningcanbeunderstoodasfollows:(1),whenthecorrelationcoefficientis0,XandYtwovariablerelationship.(2),whenthevalueofXincreases(decreases),Yvalueincreases(decreases),thetwovariablesarepositivecorrelation,correlationcoefficient(3),whenthevalueofXincreases(decreases),thevalueofYdecreases(increases),twovariablesarenegativelycorrelated,thecorrelationcoefficientbetween-1.00and0.Theabsolutevalueofthecorrelationcoefficientisbigger,strongercorrelations,thecorrelationcoefficientiscloseto1or-1,thehigherdegreeofcorrelation,thecorrelationcoefficientiscloseto0andthecorrelationisweak.Therelatedstrengthnormallythroughthefollowingrangeofjudgmentvariables:Thecorrelationcoefficient0.8-1.0strongcorrelation0.6-0.8strongcorrelation0.4-0.6mediumdegree.0.2-0.4weakcorrelation0.0-0.2veryweaklycorrelatedornotcorrelatedPearson(Pearson)correlationcoefficientPearsonisalsoknownasthecorrelation(orcorrelation)isakindofcalculationmethodofthelinearcorrelationofBritishstatisticianPearsonintwentiethCentury.SupposetherearetwovariablesX,Y,thenthePearsoncorrelationcoefficientbetweenthetwovariablescanbecalculatedbythefollowingformula:Aformula:Formulatwo:Formulathree:Formulafour:Fourequivalentformulaslistedabove,whereEisthemathematicalexpectation,covsaidthecovariance,Nrepresentsthenumberofvariables.2,scopeofapplicationWhenthetwovariablesofthestandarddeviationisnotzero,thecorrelationcoefficientisdefined,thecorrelationcoefficientforPearson:(1),isthelinearrelationshipbetweenthetwovariables,arecontinuousdata.(2)overall,twovariablesarenormallydistributed,ornearnormalunimodaldistribution.(3)andtheobservationvaluesoftwovariablesisinpairs,eachpairofobservationsareindependentofeachother.PearsoncorrelationcoefficientMatlab(accordingtotheformulafour):[cpp]viewplaincopyFunctioncoeff=myPearson(X,Y)%ofthefunctionoftherealizationofthePearsoncorrelationcoefficientcalculatingoperation%%X:numericalsequenceinput%Y:numericalsequenceinput%%output:%coeff:twoinputnumericalsequenceX,thecorrelationcoefficientofY%Error(two'numericalsequencedimensionisnotequalto');Coeff=fenzi/fenmu;End%myPearsonendfunctionCalculatethePearsoncorrelationcoefficientfunctioncanalsobeusedin[cpp]viewplaincopy4,referencecontentSpearmanRank(Spielmanrankcorrelationcoefficient)Instatistics,SpielmancorrelationcoefficientisnamedforCharlesSpearman,andoftenusetheGreeksymbol(rho)saiditsvalue.SpielmanrankcorrelationcoefficientisusedtoestimatethecorrelationbetweenthetwovariablesXandY,thecorrelationbetweenvariablescanbeusedtodescribethemonotonefunction.Ifthetwosetsoftwovariabledoesnothavethesametwoelements,so,whenoneofthevariablescanbeexpressedasamonotonefunctionwellwhenanothervariable(i.e.changesintwovariablesofthesametrend),betweenthetwovariablescanreach+1or-1.SupposethattworandomvariableswereX,Y(alsocanbeseenasasetoftwo),thenumberoftheirelementsareN,twoI(1<=i<=N)randomvariablestakevaluesrespectivelywithXi,Yisaid.SortofX,Y(atthesametimeasascendingordescending),tworankingelementssetX,y,Xi,YielementswhichareXiinXandYirankingintheYranking.ThecollectionofX,yelementsinthecorrespondingsubtractiontogetalistofdifferencesetD,di=xi-yi,1<=i<=N.SpielmanrankcorrelationcoefficientbetweenrandomvariablesXandYcanbeobtainedbyX,yorDcalculation,thecalculationmethodsareasfollows:ByrankingdifferencecalculatedfromDdiversity(formulaone):FromthetopsetX,calculatedfromY(SpielmanrankcorrelationcoefficientwerealsoconsideredafterrankingtworandomvariablesPearsoncorrelationcoefficient,thefollowingistheactualPearsoncalculatedthecorrelationcoefficientX,y)(formulatwo):Thefollowingisasetofelementsinthelistofexamplesofcalculation(calculatedonlyforSpielmanrankcorrelationcoefficient)Note:whenthetwovariablesofthesame,theirrankingisobtainedbytheaverageoftheirpositions.2,scopeofapplicationSpielmanrankcorrelationcoefficientofthedataconditionswithoutPearsoncorrelationcoefficientisstrict,aslongastheobservedvaluesoftwovariablesortransformedbycontinuousvariabledataleveldata,regardlessoftheoveralldistributionofthetwovariablesoftheform,thesizeofthesample,wecanuseSpielmancorrelationthecoefficientof.Asourceprogram:SpielmanrankcorrelationcoefficientMatlab(basedonrankingdifferencediversityDcalculatedusingtheaboveformula)[cpp]viewplaincopyFunctioncoeff=mySpearman(X,Y)%ofthefunctionusedtoachievecomputingSpielmanrankcorrelationcoefficient%%X:numericalsequenceinput%Y:numericalsequenceinput%%output:%coeff:twoinputnumericalsequenceX,thecorrela
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 征收意愿协议书模板
- 继承调解协议书范文
- 就业协议书遇到裁员
- 婚姻自行协商协议书
- 债务抵押协议书模板
- 民事赔偿双方协议书
- 离婚房租协议书范本
- 民企关闭赔偿协议书
- 离婚年底分红协议书
- 员工外出住宿协议书
- 2023学年杭州市余杭区七年级语文下学期期中考试卷附答案解析
- 《道路交通安全法》课件完整版
- 加快形成农业新质生产力
- 全国园地、林地、草地分等定级数据库规范1123
- 护理中医新技术新项目
- VDA-6.3-2016过程审核检查表
- 【MOOC】普通地质学-西南石油大学 中国大学慕课MOOC答案
- 《医疗废物的处理》课件
- 教育培训合作分成协议书
- 2024年4月27日浙江省事业单位招聘《职业能力倾向测验》试题
- 煤矿防治水细则解读
评论
0/150
提交评论