版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相关系数计算公式相关系数计算公式StatisticalcorrelationcoefficientDuetothestatisticalcorrelationcoefficientusedmorefrequently,sohereistheuseofafewarticlesintroducethesecoefficients.Thecorrelationcoefficient:astudyoftwothings(inthedatawecallthedegreeofcorrelationbetweenthevariables).Iftherearetwovariables:X,Y,correlationcoefficientobtainedbythemeaningcanbeunderstoodasfollows:(1),whenthecorrelationcoefficientis0,XandYtwovariablerelationship.(2),whenthevalueofXincreases(decreases),Yvalueincreases(decreases),thetwovariablesarepositivecorrelation,correlationcoefficient(3),whenthevalueofXincreases(decreases),thevalueofYdecreases(increases),twovariablesarenegativelycorrelated,thecorrelationcoefficientbetween-1.00and0.Theabsolutevalueofthecorrelationcoefficientisbigger,strongercorrelations,thecorrelationcoefficientiscloseto1or-1,thehigherdegreeofcorrelation,thecorrelationcoefficientiscloseto0andthecorrelationisweak.Therelatedstrengthnormallythroughthefollowingrangeofjudgmentvariables:Thecorrelationcoefficient0.8-1.0strongcorrelation0.6-0.8strongcorrelation0.4-0.6mediumdegree.0.2-0.4weakcorrelation0.0-0.2veryweaklycorrelatedornotcorrelatedPearson(Pearson)correlationcoefficientPearsonisalsoknownasthecorrelation(orcorrelation)isakindofcalculationmethodofthelinearcorrelationofBritishstatisticianPearsonintwentiethCentury.SupposetherearetwovariablesX,Y,thenthePearsoncorrelationcoefficientbetweenthetwovariablescanbecalculatedbythefollowingformula:Aformula:Formulatwo:Formulathree:Formulafour:Fourequivalentformulaslistedabove,whereEisthemathematicalexpectation,covsaidthecovariance,Nrepresentsthenumberofvariables.2,scopeofapplicationWhenthetwovariablesofthestandarddeviationisnotzero,thecorrelationcoefficientisdefined,thecorrelationcoefficientforPearson:(1),isthelinearrelationshipbetweenthetwovariables,arecontinuousdata.(2)overall,twovariablesarenormallydistributed,ornearnormalunimodaldistribution.(3)andtheobservationvaluesoftwovariablesisinpairs,eachpairofobservationsareindependentofeachother.PearsoncorrelationcoefficientMatlab(accordingtotheformulafour):[cpp]viewplaincopyFunctioncoeff=myPearson(X,Y)%ofthefunctionoftherealizationofthePearsoncorrelationcoefficientcalculatingoperation%%X:numericalsequenceinput%Y:numericalsequenceinput%%output:%coeff:twoinputnumericalsequenceX,thecorrelationcoefficientofY%Error(two'numericalsequencedimensionisnotequalto');Coeff=fenzi/fenmu;End%myPearsonendfunctionCalculatethePearsoncorrelationcoefficientfunctioncanalsobeusedin[cpp]viewplaincopy4,referencecontentSpearmanRank(Spielmanrankcorrelationcoefficient)Instatistics,SpielmancorrelationcoefficientisnamedforCharlesSpearman,andoftenusetheGreeksymbol(rho)saiditsvalue.SpielmanrankcorrelationcoefficientisusedtoestimatethecorrelationbetweenthetwovariablesXandY,thecorrelationbetweenvariablescanbeusedtodescribethemonotonefunction.Ifthetwosetsoftwovariabledoesnothavethesametwoelements,so,whenoneofthevariablescanbeexpressedasamonotonefunctionwellwhenanothervariable(i.e.changesintwovariablesofthesametrend),betweenthetwovariablescanreach+1or-1.SupposethattworandomvariableswereX,Y(alsocanbeseenasasetoftwo),thenumberoftheirelementsareN,twoI(1<=i<=N)randomvariablestakevaluesrespectivelywithXi,Yisaid.SortofX,Y(atthesametimeasascendingordescending),tworankingelementssetX,y,Xi,YielementswhichareXiinXandYirankingintheYranking.ThecollectionofX,yelementsinthecorrespondingsubtractiontogetalistofdifferencesetD,di=xi-yi,1<=i<=N.SpielmanrankcorrelationcoefficientbetweenrandomvariablesXandYcanbeobtainedbyX,yorDcalculation,thecalculationmethodsareasfollows:ByrankingdifferencecalculatedfromDdiversity(formulaone):FromthetopsetX,calculatedfromY(SpielmanrankcorrelationcoefficientwerealsoconsideredafterrankingtworandomvariablesPearsoncorrelationcoefficient,thefollowingistheactualPearsoncalculatedthecorrelationcoefficientX,y)(formulatwo):Thefollowingisasetofelementsinthelistofexamplesofcalculation(calculatedonlyforSpielmanrankcorrelationcoefficient)Note:whenthetwovariablesofthesame,theirrankingisobtainedbytheaverageoftheirpositions.2,scopeofapplicationSpielmanrankcorrelationcoefficientofthedataconditionswithoutPearsoncorrelationcoefficientisstrict,aslongastheobservedvaluesoftwovariablesortransformedbycontinuousvariabledataleveldata,regardlessoftheoveralldistributionofthetwovariablesoftheform,thesizeofthesample,wecanuseSpielmancorrelationthecoefficientof.Asourceprogram:SpielmanrankcorrelationcoefficientMatlab(basedonrankingdifferencediversityDcalculatedusingtheaboveformula)[cpp]viewplaincopyFunctioncoeff=mySpearman(X,Y)%ofthefunctionusedtoachievecomputingSpielmanrankcorrelationcoefficient%%X:numericalsequenceinput%Y:numericalsequenceinput%%output:%coeff:twoinputnumericalsequenceX,thecorrela
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年软件编程与软件开发核心技术练习题
- 2026年化学实验操作与化学物质分析模拟题
- 2026年网络技术发展与安全防范应用考核
- 2026年地理信息获取与空间分析能力进阶测试题集
- 2026年社会现象人口结构变化与城市化发展题目
- 贵州省遵义市汇川区航天高级中学2026届高一生物第二学期期末监测试题含解析
- 2026年国际视野下的城市治理与创新发展题目
- 2026年健康管理师营养与饮食指导实践认证题库
- 内蒙古包头铁路第一中学2026届高一下生物期末教学质量检测试题含解析
- 2026年能源管理优化数字化监控系统实操考试
- DB37∕T 5237-2022 《超低能耗公共建筑技术标准》
- 手术后疼痛评估与护理团体标准
- 光伏公司销售日常管理制度
- CJ/T 510-2017城镇污水处理厂污泥处理稳定标准
- 山东省潍坊市2025届高三高考模拟考试物理试题及答案
- 企业人力资源管理效能评估表
- 2025年行政人事年终总结
- 短暂性脑缺血发作课件
- DB34T 1909-2013 安徽省铅酸蓄电池企业职业病危害防治工作指南
- 优衣库服装设计风格
- 2024年重庆中考物理模拟考试试题
评论
0/150
提交评论