薄透镜相位变换器_第1页
薄透镜相位变换器_第2页
薄透镜相位变换器_第3页
薄透镜相位变换器_第4页
薄透镜相位变换器_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

薄透镜相位变换器第一页,共二十五页,编辑于2023年,星期一透镜的相位变换函数透镜的屏函数4.2薄透镜相位变换器4.2.1薄透镜的相位变换函数第二页,共二十五页,编辑于2023年,星期一薄透镜条件:

光线在从透镜入射面上(x,y)点入射,在出射面以近似相同的坐标点出射。

忽略薄透镜的吸收,则其透射函数可表示为4.2薄透镜相位变换器4.2.1薄透镜的相位变换函数其中,为出射波相位与入射波相位之差,它与光程差的关系为:第三页,共二十五页,编辑于2023年,星期一4.2薄透镜相位变换器第四页,共二十五页,编辑于2023年,星期一代入将略去常数相位因子,得

4.2薄透镜相位变换器薄透镜的相位变换函数第五页,共二十五页,编辑于2023年,星期一平面波入射,出射波函数表达式为:(1)F>0,球面波将在透镜右侧距透镜F处一点汇聚;(2)F<0,出射波为发散球面波,球心在透镜的左侧,距透镜距离为。F为几何光学中透镜的焦距4.2薄透镜相位变换器第六页,共二十五页,编辑于2023年,星期一(1)衍射屏紧贴透镜

屏函数:

入射至透镜上的光波:

透镜出射面上的光波:4.2.2透镜衍射的傅立叶变换性质图4.5衍射屏(a)紧贴透镜和(b)在透镜前d处时衍射场分析光路图4.2薄透镜相位变换器第七页,共二十五页,编辑于2023年,星期一其中,为光瞳函数:由菲涅耳衍射公式,透镜后焦面上的衍射场为:4.2薄透镜相位变换器F第八页,共二十五页,编辑于2023年,星期一将代入上式,得焦平面上的衍射场与入射场的傅里叶变换成正比。4.2薄透镜相位变换器对应变换频率为:第九页,共二十五页,编辑于2023年,星期一以入射场的傅立叶变换频率:

描述焦平面上的衍射场的分布为:4.2薄透镜相位变换器夫琅禾费衍射装置实际上是一个空间频谱分析仪夫琅禾费衍射的强度分布等于屏函数的功率谱第十页,共二十五页,编辑于2023年,星期一

有限光学孔径将入射的光衍射到各个方向,每个方向都可以看成一个平面波分量。(1)傅立叶变换展开与衍射过程傅里叶光学的基本思想第十一页,共二十五页,编辑于2023年,星期一

焦平面上不同的点对应着不同平面波的传播方向,如(x,y)

点对应的平面波在x方向的空间频率为:(2)傅立叶变换的光学实现-夫琅禾费衍射第十二页,共二十五页,编辑于2023年,星期一傅立叶光学的基本思想傅立叶光学的基本思想是,对衍射屏(或物点的图像)产生的复杂波前进行傅里叶变换,衍射场分解为一系列不同方向、不同振幅的平面衍射波;特定方向的平面衍射波,出现在夫琅禾费衍射场的相应位置,实现了分谱,若在衍射场平面对频谱进行选择,就实现了空间滤波操作,因此傅立叶光学也是空间滤波和光学信息处理的理论基础。

第十三页,共二十五页,编辑于2023年,星期一4.2.3余弦光栅的衍射场沿x轴方向的一维余弦光栅的屏函数(或透过率函数):式中f0为空间频率,空间周期d=1/f0。乳胶干版上记录两束相干平行光的干涉场经化学处理,使干版透过率与干涉强度成正比即得余弦光栅。4.2薄透镜相位变换器第十四页,共二十五页,编辑于2023年,星期一

考虑单色平行光垂直照射余弦光栅,设入射波的波函数为

,透射波波函数为:应用欧拉公式,并取

,上表达式可分解为:其中:正出射平面波向上斜出射平面波向下斜出射平面波4.2薄透镜相位变换器第十五页,共二十五页,编辑于2023年,星期一在透镜后焦平面观测到这三列平面波的像,即余弦光栅的夫琅禾费衍射场分布。

若考虑光栅宽度或透镜孔径尺度D时,三列衍射波的在透镜后焦平面上的衍射斑,具有半角宽度分别为:4.2薄透镜相位变换器第十六页,共二十五页,编辑于2023年,星期一三列平面波透镜透过率函数乘积。4.2薄透镜相位变换器第十七页,共二十五页,编辑于2023年,星期一

例:两个正交的余弦光栅则组合光栅屏函数为:4.2薄透镜相位变换器第十八页,共二十五页,编辑于2023年,星期一上式屏函数的夫琅禾费衍射场含9列平面衍射波,在焦平面上将出现9个衍射斑,其方位角分别为:图4.8正交密接余弦光栅和衍射场分布4.2薄透镜相位变换器第十九页,共二十五页,编辑于2023年,星期一

(2)衍射屏位于透镜之前d处一垂直入射的平面波照射衍射屏,光波从衍射屏传播到透镜前的波函数为:其中,4.2薄透镜相位变换器第二十页,共二十五页,编辑于2023年,星期一光波

通过透镜后的波函数为:得到透镜后焦平面的衍射场:

这里没有考虑透镜孔径的有限大小效应。上式中积分是一个傅立叶变换,被积函数为两个函数的卷积。4.2薄透镜相位变换器第二十一页,共二十五页,编辑于2023年,星期一根据傅里叶变换性质,两个卷积函数的傅里叶变换等于它们分别傅立叶变换的乘积,因此有:其中有:4.2薄透镜相位变换器第二十二页,共二十五页,编辑于2023年,星期一焦平面的衍射场是衍射屏的傅立叶变换,当d=F时,衍射屏函数与衍射场是完全的傅里叶变换关系。

通过两种较为简单情形,在认为透镜孔径足够大时,得到透镜焦平面上的衍射场与衍射屏函数的傅立叶变换成正比,更一般的情形这里不作讨论,同样可得到相似的关系。4.2薄透镜相位变换器第二十三页,共二十五页,编辑于2023年,星期一本节习题1.导出透明薄楔形棱镜的相位变换函数和透过率函数,设棱镜的楔角为,棱镜材料的折射率为n。4.2薄透镜相位变换器第二十四页,共二十五页,编辑于2023

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论