版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CONTENTSPreface xiAbbreviationsandAcronyms xiiiINTRODUCTION 1TheDefinitionofaConformalAntenna 1WhyConformalAntennas? 2History 4MetalRadomes 9SonarArrays 9References 11CIRCULARARRAYTHEORY 15Introduction 15Fundamentals 16LinearArrays 16CircularArrays 19PhaseModeTheory 23Introduction 23DiscreteElements 27DirectionalElements 29TheRippleProbleminOmnidirectionalPatterns 34IsotropicRadiators 37Higher-OrderPhaseModes 40DirectionalRadiators 40ElevationPattern 41FocusedBeamPattern 41References 46THESHAPESOFCONFORMALANTENNAS 49Introduction 49360°Coverage 52vvi CONTENTS360°CoverageUsingPlanarSurfaces 52360°CoverageUsingaCurvedSurface 54HemisphericalCoverage 57Introduction 57HemisphericalCoverageUsingPlanarSurfaces 58HalfSphere 60Cone 60Ellipsoid 62Paraboloid 63ComparingShapes 64MultifacetedSurfaces 67References 70METHODSOFANALYSIS 73Introduction 73TheProblem 75ElectricallySmallSurfaces 76Introduction 76ModalSolutions 76Introduction 76TheCircularCylinder 77AUnitCellApproach 79IntegralEquationsandtheMethodofMoments 80FiniteDifferenceTimeDomainMethods(FDTD) 81Introduction 81ConformalorContour-Patch(CP)FDTD 82FDTDinGlobalCurvilinearCoordinates 83FDTDinCylindricalCoordinates 84FiniteElementMethod(FEM) 87Introduction 87HybridFE-BIMethod 88ElectricallyLargeSurfaces 89Introduction 89High-FrequencyMethodsforPECSurfaces 90High-FrequencyMethodsforDielectricCoatedSurfaces 93TwoExamples 95Introduction 95TheApertureAntenna 95TheMicrostrip-PatchAntenna 98AComparisonofAnalysisMethods 100Appendix4A—Interpretationoftheraytheory 1004A.1WatsonTransformation 1034A.2FockSubstitution 1034A.3SDPIntegration 1044A.4SurfaceWaves 1054A.5Generalization 107References 1085 GEODESICSONCURVEDSURFACES123CONTENTSvii5.1 Introduction1235.1.1DefinitionofaSurfaceandRelatedParameters1255.1.2TheGeodesicEquation1275.1.3SolvingtheGeodesicEquationandtheExistenceofGeodesics1285.2 SinglyCurvedSurfaces1305.3 DoublyCurvedSurfaces1355.3.1Introduction1355.3.2TheCone1355.3.3RotationallySymmetricDoublyCurvedSurfaces1375.3.4PropertiesofGeodesicsonDoublyCurvedSurfaces1395.3.5GeodesicSplitting1415.4 ArbitrarilyShapedSurfaces1495.4.1Hybridsurfaces1505.4.2AnalyticallyDescribedSurfaces152References1526 ANTENNASONSINGLYCURVEDSURFACES1556.1 Introduction1556.2 ApertureAntennasonCircularCylinders1576.2.1Introduction1576.2.2Theory1576.2.3MutualCoupling15IsolatedMutualCoupling15CrossPolarizationCoupling16Arraymutualcoupling1686.2.4RadiationCharacteristics17Isolated-ElementPatterns17Embedded-ElementPatterns1766.3 ApertureAntennasonGeneralConvexCylinders1926.3.1Introduction1926.3.2MutualCoupling19TheEllipticCylinder19TheParabolicCylinder19TheHyperbolicCylinder1946.3.3RadiationCharacteristics19TheEllipticCylinder19EndEffects1966.4 ApertureAntennasonFacetedCylinders2006.4.1 Introduction2006.4.2 MutualCoupling2076.4.3 RadiationCharacteristics2096.5 ApertureAntennasonDielectricCoatedCircularCylinders2096.5.1Introduction2096.5.2MutualCoupling2IsolatedMutualCoupling2ArrayMutualCoupling2156.5.3RadiationCharacteristics221viii CONTENTSIsolated-ElementPatterns 221Embedded-ElementPatterns 223Microstrip-PatchAntennasonCoatedCircularCylinders 230Introduction 230Theory 231MutualCoupling 232Single-ElementCharacteristics 232IsolatedandArrayMutualCoupling 232RadiationCharacteristics 237Isolated-ElementPatterns 237Embedded-ElementPatterns 238TheCone 245Introduction 245MutualCoupling 246ApertureAntennas 246Microstrip-PatchAntennas 247RadiationCharacteristics 248ApertureAntennas 248Microstrip-PatchAntennas 257References 2587ANTENNASONDOUBLYCURVEDSURFACES2657.1 Introduction2657.2 ApertureAntennas2677.2.1Introduction2677.2.2MutualCoupling26IsolatedMutualCoupling26ArrayMutualCoupling2827.2.3RadiationCharacteristics2837.3 Microstrip-PatchAntennas2897.3.1Introduction2897.3.2MutualCoupling28Single-ElementCharacteristics29IsolatedMutualCoupling2947.3.3RadiationCharacteristics297References3028CONFORMALARRAYCHARACTERISTICS3058.1 Introduction3058.2 MechanicalConsiderations3068.2.1ArrayShapes3068.2.2ElementDistributiononaCurvedSurface3088.2.3MultifacetSolutions3088.2.4TileArchitecture3098.2.5StaticandDynamicStress3128.2.6OtherElectromagneticConsiderations3128.3 RadiationPatterns3138.3.1Introduction313CONTENTS ix8.3.2GratingLobes3158.3.3Scan-InvariantPattern3198.3.4Phase-ScannedPattern3198.3.5ASimpleApertureModelforMicrostripArrays3238.4 ArrayImpedance3278.4.1Introduction3278.4.2Phase-ModeImpedance3308.5 Polarization3368.5.1PolarizationDefinitions3368.5.2CylindricalArrays33DipoleElements33Apertureelements3378.5.3PolarizationinDoublyCurvedArrays340AParaboloidalArray3418.5.4PolarizationControl3488.6 CharacteristicsofSelectedConformalArrays3518.6.1NearlyPlanarArrays3518.6.2CircularArrays3518.6.3CylindricalArrays3518.6.4ConicalArrays3518.6.5SphericalArrays3548.6.6ParaboloidalArrays3568.6.7EllipsoidalArrays3588.6.8OtherShapes359References359BEAMFORMING 365Introduction 365ANoteonOrthogonalBeams 366AnalogFeedSystems 366VectorTransferMatrixSystems 367SwitchMatrixSystems 367ButlerMatrixFeedSystems 370RFLensFeedSystems 374TheR-2RLensFeed 374TheR-kRLensFeed 375Mode-ControlledLenses 376TheLuneburgLens 377TheGeodesicLens 378TheDomeAntenna 380DigitalBeamForming 380AdaptiveBeamForming 384Introduction 384TheSampleMatrixInversionMethod 384AnAdaptiveBeamFormingSimulationUsinga 385CircularArrayRemarksonFeedSystems 388References 389x CONTENTSCONFORMALARRAYPATTERNSYNTHESIS 395Introduction 395ShapeOptimization 397FourierMethodsforCircularRingArrays 397Dolph-ChebysjevPatternSynthesis 398IsotropicElements 398DirectiveElements 399AnApertureProjectionMethod 401TheMethodofAlternatingProjections 404AdaptiveArrayMethods 406Least-Mean-SquaresMethods(LMS) 407PolarimetricPatternSynthesis 409OtherOptimizationMethods 409ASynthesisExampleIncludingMutualCoupling 411AComparisonofSynthesisMethods 414References 418SCATTERINGFROMCONFORMALARRAYS 421Introduction 431Definitions 422RadarCrossSectionAnalysis 423General 423AnalysisMethodforanArrayonaConductingCylinder 424AnalysisMethodforanArrayonaConductingCylinder 426withaDielectricCoatingCylindricalArray 427AnalysisandExperiment—RectangularGrid 427Higher-OrderWaveguideModes 430TriangularGrid 432ConclusionsfromthePECConformalArrayAnalysis 433CylindricalArraywithDielectricCoating 435SingleElementwithDielectricCoating 436ArraywithDielectricCoating 437RadiationandScatteringTrade-off 446Introduction 446Single-ElementResults 449ArrayResults 454Discussion 458References 459SubjectIndex 463AbouttheAuthors 471PREFACEThisbookistheresultofclosecooperationbetweenindustryandacademia,notablyssonandtwouniversitiesinSweden:ChalmersUniversityofTechnology(CTH)inGöte-borgandTheRoyalInstituteofTechnology(KTH)inStockholm.In1987,astudentatCTHpresentedherPhDthesisonthetopicofconformalantennas.Itwasthenconsideredaninterestingbutdifficulttechnologywithnoimmediateapplication.About10yearslat-er,manyconformalarrayapplicationswereseriouslyconsideredorindevelopment.thattime,webecameinvolvedinseveralconformalR&Dprogramsthatalsoincludedex-perimentalhardwareformodelverification.Ourintentionwastocompileresultstheseeffortsintoone,thickinternalreport.However,withthesupportandencouragementfrommanycolleagues,wesetoutonthemuchmoredemandingroutetowriteabookonthesubject.Manystandardtextbooksonantennasincludeshortsectionsonconformalarrayanten-nas,butusuallyonlysimplereferencecasesaretreated.Themutualcoupling(whichisanimportantparameter)isoftenjustbrieflymentioned.Examplesofarraycharacteristicswiththemutualcouplingincludedarerare.Thus,webelievethisbookfillsagapintheexistingliterature.Ourpurposeistopresentthefundamentalprinciplesbehindconformalantennas,aswellashands-oninformationnecessaryfortheanalysisanddesignofconformalarrays.Graphicalillustrationsareusedextensively,bothforcalculatedandmeasuredsults,includingresultsnotpublishedbefore.Wedescribetheoreticalmethodsforanalysisanddesign,andincludeexplicitformulaswhereapplicable.Fromapracticalpointofview,mechanicalaspects,beam-formingtechniques,andpackagingofconformalantennasareincluded.Furthermore,scatteringpropertiesarediscussed,whichareofterestinstealthapplications,forexample.Listsofreferencesareprovidedattheendofeachchapterforfurtherstudies.Thus,wehopethatthebookwillbecomeausefultoolforthepracticingantennaandsystemsengineerinunderstandingandworkingwiththeseterestingantennas.Eachchapterstartswithsomeintroductorymaterial,thatis,thebasicconceptsthatessentialtogetanunderstandingofthemoreadvancedaspects.Thefirstthreechapterspresentanoverviewofconformalarrayprinciplesandapplications,includingthetheoryforcirculararraysandphasemodeconcepts,anddiscussionsofvariousshapesofconfor-malarrays.InChapters4and5,theoreticalmethodsforanalysisanddesignaredescribed,in-cludingexplicitformulas;forexample,forgeodesicsonmoregeneralsurfacesthanthecanonicalcircularcylinderandsphere.Doublycurvedsurfacesanddielectriccoveredsurfacesusinghigh-frequencymethodsarealsoincluded.Twocanonicalexamplesarealsodiscussedindetail,thusassistingthereaderinhis/herownconformalantennaanalysis.xixiiPREFACExiiPREFACEChapters6and7dealwithradiatingelementsonsinglycurvedanddoublycurvedfaces.Thefocusisonmutualcouplingcharacteristicsandelementradiationproperties.Elementtypesincludewaveguide-fedaperturesandmicrostrippatches.Forbothmeasureddatasupportsthecalculatedresults.Chapters8and9treatconformalarrayantennacharacteristics—radiation,impedanceandpolarization—aswellasmechanicalandpackagingaspects.Feedingsystemsandbeam-scanningprinciplesarealsoincluded.Chapter10discussesvarioussynthesismethods,withsomeexamples.Also,suchasoptimizingtheshape,distributionofelements,polarization,andbandwidtharecluded.Thefinalchapterdealswithmethodsfortheanalysisofscattering(radarcrosssection)fromconformalarrayantennas;inparticular,waveguide-fedapertureelementswithwithoutadielectriccoating.Weincludealsoadiscussionontheproblemofreducingradarcrosssectionwithoutdecreasingtheantennaperformance.Whilewrittenwithengineeringapplicationsinmind,thisbookcanalsoserveasatextforgraduatecoursesinadvancedantennasandantennasystems.ACKNOWLEDGMENTSAmongthenumerouscolleaguesandfriendswhohavesupportedourworkwiththeirad-vice,encouragement,andcontributions,wecanmentiononlyafew.Inparticular,wewanttothankDr.BjörnThors,RoyalInstituteofTechnology/EricssonAB,Sweden,forhiscontributionsonscatteringandradiationcharacteristics,andforvaluablediscussions.ThanksalsogotoDr.ZvonimirSipus,UniversityofZagreb,Croatia,forcontributingsultsforantennasonsinglyanddoublycurvedsurfaces.Dr.HansSteyskal,U.S.AirForceResearchLab,helpedwithvaluablecomments,especiallyregardingarraytheory,beamforming,andsynthesistechniques.OthercontributorsincludeDr.TorleifSwedishDefenceResearchAgency(FOI);Prof.LarsPettersson,SwedishDefencesearchAgency(FOI);Dr.SilviaRaffaelli,EricssonAB,Sweden;andTechn.Lic.Lanne,EricssonMicrowaveSystemsAB/ChalmersUniversityofTechnology,Sweden.SpecialthanksgotoProf.KjellRosquist,StockholmUniversity,Sweden,forhisguid-anceintotheworldofgeodesics.Wearegratefulforthepermissiontouseresultsfromseveralrecentstudiesonconfor-malantennasinSweden,amongthemworksponsoredbyEricssonMicrowaveSystemsAB,EricssonAB,TheFoundationforStrategicResearch(SSF),andTheSwedishfenseMaterialAdministration(FMV).Lastbutnotleast,weexpressourappreciationandgratitudetoourfamiliesfortheirencouragement,understanding,andpatienceduringthewritingofthisbook. ANDA/D analog/digitalAF arrayfactorBI boundaryintegralBiCG biconjugategradientmethodBOR bodyofrevolutionCAD computeraideddesignCP contourpath;alsocircularpolarization,conformalDBF digitalbeamformingDE differentialequationDOA directionofarrivalEFIE electricfieldintegralequationEGL endfiregratinglobeEM electromagneticEMP electromagneticpulseESM electronicsupportmeasuresEWCA EuropeanWorkshoponConformalAntennasFDTD finite-elementtimedomainFE finiteelementFE-BI finite-elementboundaryintegralFBF fastbeamformingFEM finite-elementmethodFFT fastFouriertransformFMF fastmodeformerFSS frequency-selectivestructureGCM geodesicconstantmethodGCS geodesiccoordinatesystemGaAs galliumarsenideGHOR generalhyperboloidofrevolutionGO geometricalopticsGPOR generalparaboloidofrevolutionGTD geometrictheoryofdiffractionh/D characteristicdimensionofaparaboloid,heightoverdiameterHF highfrequencyHP horizontalpolarizationIBC impedanceboundaryconditionIC integratedcircuitIE integralequationIEP isolatedelementpatternxiiixivABBREVIATIONSANDACRONYMSxivABBREVIATIONSANDACRONYMSIF intermediatefrequencyLEO lowearthorbitLMS leastmeansquareLNA low-noiseamplifierLP linearpolarizationLPI lowprobabilityofinterceptMEMS microelectromechanicalsystemMMIC monolithicmicrowaveintegratedcircuitMOM,MoM methodofmomentsMPIE mixed-potentialintegralequationMTI moving-targetindicationMUSIC multiple-signalclassificationPEC perfectelectricconductorPO physicalopticsPTD physicaltheoryofdiffractionQ qualityfactorRCS radarcrosssectionRF radiofrequencyRX receiveSAR synthetic-apertureradarSBR shootandbounceray(method)SDP steepestdecentpathSMI samplematrixinversionSNIR signal-to-noiseplusinterferenceratioSPNT single-poleN-throwswitchSTAP space–timeadaptiveprocessingTACAN tacticalairnavigationTD timedomainTD-PO timedomainphysicalopticsTD-UTD timedomainuniformtheoryofdiffractionTE transverseelectricTEM transverseelectromagneticTM transversemagneticTX transmitUCA uniformcirculararrayULA uniformlineararrayUPML uniaxialperfectlymatchedlayerUTD uniformtheoryofdiffractionVP verticalpolarizationVPD variablepowerdivider1 INTRODUCTION1.1THEDEFINITIONOFACONFORMALANTENNAAconformalantennaisanantennathatconformstosomething;inourcase,itconformstoaprescribedshape.Theshapecanbesomepartofanairplane,high-speedtrain,orvehicle.Thepurposeistobuildtheantennasothatitbecomesintegratedwiththestruc-tureanddoesnotcauseextradrag.Thepurposecanalsobethattheantennaintegrationmakestheantennalessdisturbing,lessvisibletothehumaneye;forinstance,inanenvironment.Atypicaladditionalrequirementinmoderndefensesystemsisthatthetennanotbackscattermicrowaveradiationwhenilluminatedby,forexample,anenemyradartransmitter(i.e.,ithasstealthproperties).TheIEEEStandardDefinitionofTermsforAntennas(IEEEStd145-1993)givesthefollowingdefinition:conformalantenna[conformalarray].Anantenna[anarray]thatconformstoafacewhoseshapeisdeterminedbyconsiderationsotherthanelectromagnetic;forexample,aerodynamicorhydrodynamic.conformalarray.See:conformalantenna.Strictlyspeaking,thedefinitionincludesalsoplanararraysiftheplanar“shapeisdeter-minedbyconsiderationsotherthanelectromagnetic.”Thisis,however,notcommonpractice.Usually,aconformalantennaiscylindrical,spherical,orsomeothershape,withtheradiatingelementsmountedonorintegratedintothesmoothlycurvedsurface.ConformalArrayAntennaTheoryandDesign.ByLarsJosefssonandPatrikPersson 1©2006InstituteofElectricalandElectronicsEngineers,Inc.2INTRODUCTION2INTRODUCTIONvariationsexist,though,likeapproximatingthesmoothsurfacebyseveralplanarfacets.Thismaybeapracticalsolutioninordertosimplifythepackagingofradiatorstogetherwithactiveandpassivefeedingarrangements.WHYCONFORMALANTENNAS?Amodernaircrafthasmanyantennasprotrudingfromitsstructure,fornavigation,vari-ouscommunicationsystems,instrumentlandingsystems,radaraltimeter,andsoon.Therecanbeasmanyas20differentantennasormore(upto70antennasonatypicalmilitaryaircrafthasbeenquoted[Schneideretal.2001]),causingconsiderabledragandincreasedfuelconsumption.Integratingtheseantennasintotheaircraftskinishighlyde-sirable[Wingert&Howard1996].Preferably,someoftheantennafunctionsshouldbecombinedinthesameunitifthedesigncanbemadebroadbandenough.Theneedforconformalantennasisevenmorepronouncedforthelarge-sizedaperturesthatareneces-saryforfunctionslikesatellitecommunicationandmilitaryairbornesurveillanceradars.Atypicalconformalexperimentalarrayforleading-wing-edgeintegrationisshowninFigure1.2.TheX-bandarrayisconformalwiththeapproximatelyellipticalcrosssectionshapeoftheleadingedgeofanaircraftwing[Kannoetal.1996].Figure1.3showsanevenmorerealisticallywing-shapedC-bandarray(cf.[Steyskal2002]).Arrayantennaswithradiatingelementsonthesurfaceofacylinder,sphere,orandsoon,withouttheshapebeingdictatedby,forexample,aerodynamicorsimilarsons,areusuallyalsocalledconformalarrays.Theantennasmayhavetheirshapedeter-minedbyaparticularelectromagneticrequirementsuchasantennabeamshapeand/oran-gularcoverage.TocallthemconformalarrayantennasisnotstrictlyaccordingtotheIEEEdefinitioncitedabove,butwefollowwhatiscommonpracticetoday.Acylindricalorcirculararrayofelementshasapotentialof360°coverage,eitherwithanomnidirectionalbeam,multiplebeams,oranarrowbeamthatcanbesteeredFigure1.1.Atleast20–30antennasprotrudefromtheskinofamodernaircraft.(From[Hopkinsetal.1997],reprintedbypermissionoftheAmericanInstituteofAeronauticsandAstronautics,Inc.)Figure1.2.Conformalarrayantennaforaircraftwingintegration[Kannoetal.1996].Figure1.3.Amicrostriparrayconformaltoawingprofileinthetestchamber.Seealsocolorinsert,Figure1.(CourtesyofAirForceResearchLab./AntennaTechnologyBranch,HanscomAFB,USA.) 3PAGE10PAGE10INTRODUCTION1.31.3HISTORY PAGE5360°.Atypicalapplicationcouldbeasabasestationantennainamobilecommunicationsystem.Today,thecommonsolutionisthreeseparateantennas,eachcoveringa120°sec-tor.Instead,onecylindricalarraycouldbeused,resultinginamuchmorecompactinstal-lationandlesscost.AnotherexampleofshapebeingdictatedbycoverageisshowninFigure1.4.Thisisasatellite-borneconicalarray(and,hence,thedragproblemiscertainlynotanissuehere).Theargumentsforandagainstconformalarrayscanbediscussedatlength.Theappli-cationsandrequirementsarequitevariable,leadingtodifferentconclusions.Inspiteofthis,andtoencouragefurtherdiscussion,wepresentasummarybasedonreflectionsbyGuy[1999],Guyetal.[1999],Watkins[2001],andothersinTable1.1.HISTORYThefieldofphasedarrayantennaswasaveryactiveareaofresearchintheyearsfromWWIIuptoabout1975.Duringthisperiod,muchpioneeringworkwasdonealsoforconformalarrays.However,electronicallyscanned,phasedarrayantennasdidnotwidespreaduseuntilthenecessarymeansforfeedingandsteeringthearraybecameavail-able.Integratedcircuit(IC)technology,includingmonolithicmicrowaveintegratedcir-cuits(MMIC),filledthisgap,providingreliabletechnicalsolutionswithapotentialforFigure1.4.Aconicalconformalarrayfordatacommunicationfromasatellite[Vourchetal.1998,Cailleetal.2002].Seealsocolorinsert,Figure5.Table1.1.PlanarversusconformalarrayantennasParameterPlanararrayConformalarrayTechnologyMatureNotfullyestablishedAnalysistoolsAvailableIndevelopmentBeamcontrolPhaseonlyusuallysufficient,Amplitudeandphase,morefixedamplitudecomplicatedPolarizationSinglecanbeused(dualoftenPolarizationcontrolrequired,desired)especiallyifdoublycurvedGainDropswithincreasedscanControlled,dependsonshapeFrequencybandwidthTypically20%WiderthanplanarispossibleAngularcoverageLimitedtoroughly±60°Verywide,halfsphereRCSLargespecularRCSLowerthanplanarInstallationonplatformPlanarshapelimitsduetoStructurallyintegrated,leavessweptvolumeextraspace.NodragRadomeAberrationeffectsNoconventionalradome,noboresighterrorPackagingofelectronics Knownmultilayersolutions Sizerestrictioniflargecurvature,facetspossiblelowcost,evenforverycomplexarrayantennas.Animportantfactorwasalsothedevel-opmentofdigitalprocessorsthatcanhandletheenormouslyincreasedrateofinformationprovidedbyphasedarraysystems.Digitalprocessingtechniquesmadephasedarraytennasystemscosteffective,thatis,theyprovidedthecustomersvalueforthemoneyspent.Thisbeingtrueforphasedarraysingeneral,italsoholdsforconformalarrayantennas.However,intheareaofconformalarrays,electromagneticmodelsanddesignknow-howneededextradevelopment.Duringthelast10to20years,numericaltechniques,electro-magneticanalysismethods,andtheunderstandingofantennasoncurvedsurfacesimproved.Importantprogresshasbeenmadeinhigh-frequencytechniques,includinganalysisofsurfacewavediffractionandmodelingofradiatingsourcesoncurvedfaces.Theoriginofconformalarrayscanbetracedatleastbacktothe1930swhenasystemofdipoleelementsarrangedonacircle,thusformingacirculararray,wasanalyzedbyChireix[1936].Later,inthe1950s,severalpublicationsonthesubjectwerepresented;see,forexample,[Knudsen1953a,b].Thecirculararraywasattractivebecauseofitsrota-tionalsymmetry.Properphasingcancreateadirectionalbeam,whichcanbescanned360°inazimuth.Theapplicationswereinbroadcasting,communication,andlaternavigationanddirectionfinding.Anadvanced,morerecentapplicationusingalargeculararrayistheFrenchRIASexperimentalradarsystem[Doreyetal.1989,ColinDuringtheSecondWorldWar,HFcirculararraysweredevelopedforradiosignalin-telligencegatheringanddirectionfindinginGermany.Theseso-calledWullenweber1ar-rays(codewordforthedevelopmentproject)werequitelargewithadiameterofabout100meters.Afterthewar,anexperimentalWullenweberarraywasdevelopedattheUni-versityofIllinois(seeFigure1.5).Thisarrayhad120radiatingelementsinfrontofaflectingscreen.Thediameterwasabout300m;notethesizeofthebuildingsinthecenter[Gething1966].ManysimilarsystemswerebuiltinothercountriesduringtheColdWar.1NamedforJ.Wullenweber,1488–1537,LordMayorofLübeckFigure.1.5.Theexperimental300mdiameterWullenweberantennaattheUniver-sityofIllinois.(CourtesyP.J.D.Gething,“High-FrequencyDirectionFinding,”Pro-ceedingsofIEE,January1966,p.54.)Someofthesehugeantennasmaystillbeoperating.Seealso[IREPGAPNewsletterVol.3,December1960].Duringthisperiod,new,efficientpatternsynthesismethodsandpracticalfeedingbeamcontrolschemeswereinvestigatedbyseveralworkers.Foranoverviewsee1981,1983].Averyusefulapproachinthisworkwasbasedontheconceptofphasemodes.Forthecirculararray,theexcitationcanbeviewedasaperiodicfunctioninazimuth,withperiod21r.TheexcitationcanthereforebeexpressedasaFourierseries.Eachterminthisseriesisaphasemode,whichcanbegeneratedinthepracticalsituationbyconvenientworks,specificallytheButlermatrix.Aphasemodehasconstantamplitudebutalinearphaseprogressionfromoneradiatingelementtothenext,totalingamultipleof21rovercircumference.Thephasemodeconceptprovedtobeanefficienttoolinpatternsynthesis,andwillbedescribedinmoredetailinChapters2and10.Bymeasuringthephasemodesonreception,thesignaldirectionofarrival(DOA)canbedetermined[Rehnmark1980].Figure1.6showsadirection-findingapplicationusingthistechnique.Withomnidirectionalelements,thefullcirclecanbeused.However,constructivead-ditionofsignalsfromboththefrontandtherearpartofthecirculararrayisnoteasilyachieved,inparticularnotoveranextendedbandwidth.Mostcirculararraysthereforeusedirectiveradiatingelements,pointingoutwardfromthecenter.TheWullenweberanten-nashaveusuallyareflectiveelementorscreenbehindeachradiator,makingthemtive.Elementdirectivityhasbeenanalyzedinrelationtothephasemodeconceptandnificantimprovementscomparedtoomnidirectionalelementsweredemonstratedetal.1981].Inordertoincreasethedirectivityandnarrowthebeaminelevation,severalcirculararraysplacedontopofeachothercanbeused.AgoodexampleistheelectronicallyscannedTACAN(tacticalnavigation)antenna[Christopher1974,Shestag1974].TheTACANantennacanbeplacedontheground,radiatingarotatingphase-codedsignalhelpsaircrafttofindtheirpositioninrelationto,forexample,anairfield.JimWaitdidfundamentalworkonradiationfromaperturesinmetalliccircularcylin-ders;see[Wait1959].HisworkhasbeencontinuedbymanyothersemployingeitherFigure1.6.Broadbandcirculararrayforsignal-bearingmeasurements.Seealsocol-orinsert,Figure7.(CourtesyofAnarenInc.,Syracuse,NY,USA.)modalexpansiontechniquesorhigh-frequencydiffractiontechniques[Hessel1970,Pathaketal.1980].Inparticular,mutualcouplingisincludedinthesolutions.Themeth-odswillbedescribedinChapter4.Nose-mountedantennasinmissilesoraircraftareprotectedbyapointedradome.Al-ternatively,theantennaelementscouldbeputontheradomeitself.Thispossibilitycreatedaninterestinconformalarraysoncones[Mungeretal.1974].Theprogr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流仓库经理年度述职报告
- 智慧教室装修方案
- 从业人员安全生产教育培训
- 孕期糖尿病饮食和护理
- 老年人糖尿病病人的护理
- 龋齿病的发展过程图解
- 2.3.1物质的量的单位-摩尔 课件高一上学期化学人教版(2019)必修第一册
- 吉林省2024七年级数学上册第1章有理数1.10有理数的除法课件新版华东师大版
- 吉林省2024七年级数学上册第1章有理数全章整合与提升课件新版华东师大版
- 深度学习及自动驾驶应用 课件 第9、10章 生成对抗网络及自动驾驶应用、强化学习理论及自动驾驶应用实践
- 养老机构心理危机应急救援预案
- 《老年人生活照护》试卷A卷及答案
- 2024年上海公务员考试申论试题(A卷)
- 工厂蒸汽管道铺设工程合同
- 电子信息产业园建设项目可行性研究报告
- 消防安全知识培训课件
- 高中历史选择性必修2知识点总结归纳
- 16J914-1 公用建筑卫生间
- 物联网应用技术职业生涯规划
- 2024年广东恒健投资控股有限公司招聘笔试参考题库含答案解析
- 标识导示系统合同
评论
0/150
提交评论