版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数的综合应用第5课时1.能利用导数研究函数的单调性、极值、最值等.2.能利用导数研究函数的一些综合性问题.函数与导数是高中数学的核心内容,函数思想贯穿中学数学全过程.导数作为工具,提供了研究函数性质的一般性方法.作为“平台”,可以把函数、方程、不等式、圆锥曲线等有机地联系在一起,在能力立意的命题思想指导下,与导数相关的问题已成为高考数学命题的必考考点之一.函数与方程、不等式相结合是高考热点与难点.问题1在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调
;如果f'(x)<0,那么函数y=f(x)在这个区间内单调
.f'(x)>0(或<0)只是函数f(x)在该区间单调递增(或递减)的
条件,可导函数f(x)在(a,b)上单调递增(或递减)的充要条件是:对任意x∈(a,b),都有f'(x)≥0(或≤0)且f(x)在(a,b)的任意子区间上都不恒为零.利用此充要条件可以方便地解决“已知函数的单调性,反过来确定函数解析式中的参数的值或范围”问题.
递增递减充分问题2极大值极小值极值问题3将函数y=f(x)在(a,b)内的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是
,最小的一个是
.
最大值最小值1A2B314已知函数的单调性求参数的取值范围问题利用极值判断方程根的个数x1(1,+∞)f'(x)+0-0+f(x)↗极大值↘极小值↗对导数的综合考查xf'(x)-0+f(x)↘极小值↗x(-∞,-1)-1(-1,3)3(3,+∞)f'(x)+0-0+f(x)↗极大值↘极小值↗CA[-2,+∞)有关的数学名言
数学知识是最纯粹的逻辑思维活动,以及最高级智能活力美学体现。——普林舍姆
历史使人聪明,诗歌使人机智,数学使人精细。——培根
数学是最宝贵的研究精神之一。——华罗庚
没有哪门学科
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《热工与流体力学》2021-2022学年第一学期期末试卷
- 沈阳理工大学《光电类导论》2021-2022学年期末试卷
- 沈阳理工大学《单片机原理与应用》2021-2022学年期末试卷
- 管护经营合同更名理
- 合同标准安全条款自查报告范文
- 银行员工转正申请书范文6篇
- 2024系统开发合同2
- 2024消防工程合同范本(修改)
- 深圳大学《中美关系史》2021-2022学年第一学期期末试卷
- 应急管理条例解读
- 2024届广东省深圳市宝安区宝安中学物理九上期中质量跟踪监视模拟试题含解析
- 工业设计方法学
- GB/T 43218-2023煤炭测硫仪性能验收导则
- 创新方法大赛理论测试题库(2018、2019、经典题库)
- 湖北省武汉一初慧泉2023-2024+学年上学期9月同步练习Unit1-Unit+3九年级英语试卷
- 《中华商业文化》第五章
- (完整版)华为虚拟化技术方案
- 直播培训合作协议
- 3dMAX菜单中英文对照表(完整版)
- 分析化学期中试卷
- 企业供应链保障措施怎么写
评论
0/150
提交评论