版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面是整理的黄冈金牌之路单元期末卷数学八上,供大家参考!黄冈金牌之路单元期末卷数学八上一、选择题(每小题2分,共24分)1.在直角坐标中,点(﹣1,2)第()象限.A.一B.二C.三D.四2.的相反数是()A.5B.﹣5C.±5D.253.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个4.已知是二元一次方程2x﹣y=14的解,则k的值是()A.2B.﹣2C.3D.﹣35.下列各式中,正确的是()A.=±4B.±=4C.=﹣3D.=﹣46.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°7.某班50名同学的数学成绩为:5人100分,30人90分,10人75分,5人60分,则这组数据的众数和平均数分别是()A.90,85B.30,85C.30,90D.90,828.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原三角形向左平移两个单位B.将原三角形向右平移两个单位C.关于x轴对称D.关于y轴对称9.下列命题中,真命题有()①同旁内角互补;②三角形的一个外角等于它的两个内角之和;③一个三角形的最大角不会小于60°,最小角不会大于60°;④若函数y=(m+1)x是正比例函数,且图象在第二、四象限,则m=﹣2.A.1个B.2个C.3个D.4个10.对于一次函数y=x+6,下列结论错误的是()A.y随x的增大而增大B.函数图象与坐标轴围成的三角形面积为18C.函数图象不经过第四象限D.函数图象与x轴正方形夹角为30°11.在平面直角坐标系中,已知点A(2,3),B(6,3),连接AB,如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”,则下列点为AB的“临近点”的是()A.(,)B.(3,3)C.(6,5)D.(1,0)12.如图,直线y=﹣x+3与坐标轴分别交于A,B两点,与直线y=x交于点C,线段OA上的点Q以每秒1个单位长度的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为()A.2B.4C.2或3D.2或4二、填空题(本题每小题3分,共15分)13.边长为2的正方形的对角线长为.14.在平面直角坐标系中,点M(2+x,9﹣x2)在x轴的负半轴上,则点M的坐标是.15.已知关于x,y的二元一次方程组(a,b,k均为常数,且a≠0,k≠0)的解为,则直线y=ax+b和直线y=kx的交点坐标为.16.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.17.已知y=﹣+4,则=.三、解答题(本题共61分)18.计算(1)2﹣﹣+(+1)2.(2)﹣×+(+)(﹣).19.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥CD.20.某商场代销甲、乙两种商品,其中甲种商品进价为120元/件,售价为130元/件,乙种商品进价为100元/件,售价为150元/件.(1)若商场用36000元购进这两种商品若干,销售完后可获利润6000元,则该商场购进甲、乙两种商品各多少件?(列方程组解答)(2)若商场购进这两种商品共100件,设购进甲种商品x件,两种商品销售后可获总利润为y元,请写出y与x的函数关系式(不要求写出自变量x的范围),并指出购进甲种商品件数x逐渐增加时,总利润y是增加还是减少?21.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)1号2号3号4号5号总分甲班891009611897500乙班1009511091104500统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,请解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差;(4)你认为应该定哪一个班为冠军?为什么?22.在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.23.在△ABC中,已知AB=AC=10,BC=16,点D在BC上,且BD=,连接AD,求证:AD⊥AC.24.如图,一次函数y=ax﹣b与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于B(0,﹣4),且OA=AB,△AOB的面积为6.(1)求两个函数的解析式;(2)若有一个点M(2,0),直线BM与AO交于点P,求点P的坐标;(3)在x轴上是否存在点E,使S△ABE=5?若存在,求点E的坐标;若不存在,请说明理由.20162017学年四川省雅安市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共24分)1.在直角坐标中,点(﹣1,2)第()象限.A.一B.二C.三D.四【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)第二象限.故选B.2.的相反数是()A.5B.﹣5C.±5D.25【考点】实数的性质.【分析】一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.【解答】解:∵=5,而5的相反数是﹣5,∴的相反数是5.故选B.3.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,,共有3个.故选C.4.已知是二元一次方程2x﹣y=14的解,则k的值是()A.2B.﹣2C.3D.﹣3【考点】二元一次方程的解.【分析】根据方程的解的定义,将方程2x﹣y=14中x,y用k替换得到k的一元一次方程,进行求解.【解答】解:将代入二元一次方程2x﹣y=14,得7k=14,k=2.故选A.5.下列各式中,正确的是()A.=±4B.±=4C.=﹣3D.=﹣4【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.6.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°【考点】平行线的性质;直角三角形的性质.【分析】根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.【解答】解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°,故选:D.7.某班50名同学的数学成绩为:5人100分,30人90分,10人75分,5人60分,则这组数据的众数和平均数分别是()A.90,85B.30,85C.30,90D.90,82【考点】众数;加权平均数.【分析】根据加权平均数的计算公式就可以求出平均数;根据众数的定义就可以求解.【解答】解:在这一组数据中90分是出现次数最多的,故众数是90分;这组数据的平均数为=85(分);所以这组数据的众数和平均数分别是90(分),85(分).故选A.8.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原三角形向左平移两个单位B.将原三角形向右平移两个单位C.关于x轴对称D.关于y轴对称【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化平移.【分析】根据向左平移,横坐标减解答.【解答】解:将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是将原三角形向左平移两个单位.故选A.9.下列命题中,真命题有()①同旁内角互补;②三角形的一个外角等于它的两个内角之和;③一个三角形的最大角不会小于60°,最小角不会大于60°;④若函数y=(m+1)x是正比例函数,且图象在第二、四象限,则m=﹣2.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别根据平行线的性质、三角形外角的性质、三角形内角和定理及正比例函数的性质对各小题进行逐一判断即可.【解答】解:①两直线平行,同旁内角互补,故原命题是假命题;②三角形的一个外角等于它不相邻的两个内角之和,故原命题是假命题;③一个三角形的最大角不会小于60°,最小角不会大于60°,故原命题是真命题;④若函数y=(m+1)x是正比例函数,且图象在第二、四象限,则m=﹣2,故原命题是真命题.故选B.10.对于一次函数y=x+6,下列结论错误的是()A.y随x的增大而增大B.函数图象与坐标轴围成的三角形面积为18C.函数图象不经过第四象限D.函数图象与x轴正方形夹角为30°【考点】一次函数的性质.【分析】根据一次函数的图象与系数的关系对各选项进行逐一分析即可.【解答】解:A、∵一次函数y=x+6中,k=1>0,∴y随x的增大而增大,故本选项正确;B、∵一次函数y=x+6与坐标轴的交点分别为(0,6),(﹣6,0),∴函数图象与坐标轴围成的三角形面积=×6×6=18,故本选项正确;C、∵一次函数y=x+6中,k=1>0,b=6>0,∴此函数的图象经过一二三象限,不经过第四象限,故本选项正确;D、∵一次函数y=x+6与坐标轴的交点分别为(0,6),(﹣6,0),∴函数图象与x轴正方形夹角为45°,故本选项错误.故选D.11.在平面直角坐标系中,已知点A(2,3),B(6,3),连接AB,如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”,则下列点为AB的“临近点”的是()A.(,)B.(3,3)C.(6,5)D.(1,0)【考点】一次函数图象上点的坐标特征.【分析】设P(m,n),根据题意列出关于m的不等式,求出解集即可确定出m的范围即可.【解答】解:设P(m,n),∵点P在直线y=x﹣1上,点P(m,n)是线段AB的“邻近点”,∴n=m﹣1,且|n﹣3|<1,∴|m﹣4|<1,即﹣1<m﹣4<1,解得:3<m<5.故选A.12.如图,直线y=﹣x+3与坐标轴分别交于A,B两点,与直线y=x交于点C,线段OA上的点Q以每秒1个单位长度的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为()A.2B.4C.2或3D.2或4【考点】两条直线相交或平行问题;等腰直角三角形.【分析】分为两种情况,画出图形,根据等腰三角形的性质求出即可.【解答】解:∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故选D.二、填空题(本题每小题3分,共15分)13.边长为2的正方形的对角线长为4.【考点】正方形的性质.【分析】利用正方形的性质和等腰直角三角形的性质求解.【解答】解:边长为2的正方形的对角线长=×2=4,.故答案为4.14.在平面直角坐标系中,点M(2+x,9﹣x2)在x轴的负半轴上,则点M的坐标是(﹣1,0).【考点】点的坐标.【分析】根据x轴上点的纵坐标为0列方程求出x,再根据x轴负半轴点的横坐标是负数确定出x的值,然后求解即可.【解答】解:∵点M(2+x,9﹣x2)在x轴的负半轴上,∴9﹣x2=0,解得x=±3,∵点M在x轴负半轴,∴2+x<0,解得x<﹣2,所以,x=﹣3,2+x=2+(﹣3)=﹣1,所以,点M的坐标是(﹣1,0).故答案为:(﹣1,0).15.已知关于x,y的二元一次方程组(a,b,k均为常数,且a≠0,k≠0)的解为,则直线y=ax+b和直线y=kx的交点坐标为(﹣4,﹣2).【考点】一次函数与二元一次方程(组).【分析】根据一次函数与二元一次方程组的关系求解.【解答】解:因为关于x,y的二元一次方程组(a,b,k均为常数,且a≠0,k≠0)的解为,则直线y=ax+b和直线y=kx的交点坐标为(﹣4,﹣2),故答案为:(﹣4,﹣2).16.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.【考点】三角形内角和定理.【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.【解答】解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.17.已知y=﹣+4,则=2.【考点】二次根式的化简求值;二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求得x的值,进而求得y的值,从而求得所求式子的值.【解答】解:根据题意得x﹣1=0,解得x=1,则y=4.则原式==2.故答案是:2.三、解答题(本题共61分)18.计算(1)2﹣﹣+(+1)2.(2)﹣×+(+)(﹣).【考点】二次根式的混合运算.【分析】(1)先利用完全平方公式计算,再把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的乘除法则和平方差公式计算,然后化简后合并即可.【解答】解:(1)原式=2﹣2﹣2+2+2+1=3;(2)原式=+1﹣+3﹣2=2+1﹣2+1=2.19.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥CD.【考点】平行线的判定与性质.【分析】根据平行线的判定得到OF∥BE,由平行线的性质得到∠3=∠EGD,根据余角的性质得到∠C=∠2,即可得到结论.【解答】证明:∵∠C=∠1,∴OF∥BE,∴∠3=∠EGD,∵BE⊥DF,∴∠EGD=90°,∴∠3=90°,∴∠C+∠D=90°,∵∠2+∠D=90°,∴∠C=∠2,∴AB∥CD.20.某商场代销甲、乙两种商品,其中甲种商品进价为120元/件,售价为130元/件,乙种商品进价为100元/件,售价为150元/件.(1)若商场用36000元购进这两种商品若干,销售完后可获利润6000元,则该商场购进甲、乙两种商品各多少件?(列方程组解答)(2)若商场购进这两种商品共100件,设购进甲种商品x件,两种商品销售后可获总利润为y元,请写出y与x的函数关系式(不要求写出自变量x的范围),并指出购进甲种商品件数x逐渐增加时,总利润y是增加还是减少?【考点】一次函数的应用.【分析】(1)设购进甲商品x件,乙商品y件,根据进价36000元及利润6000元即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总利润=甲种商品利润+乙种商品利润即可得出y关于x的一次函数关系式,根据一次函数的性质即可得出结论.【解答】解:(1)设购进甲商品x件,乙商品y件,依题意得:,解得:.答:该商场购进甲商品240件,乙商品72件.(2)依题意得:y=x+=﹣40x+5000.∵﹣40<0,∴购进甲种商品件数x逐渐增加时,利润y逐渐减少.21.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)1号2号3号4号5号总分甲班891009611897500乙班1009511091104500统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,请解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差;(4)你认为应该定哪一个班为冠军?为什么?【考点】统计表;中位数;方差.【分析】(1)根据优秀率=优秀人数除以总人数计算;(2)根据中位数的定义求解;(3)根据平均数和方差的概念计算.【解答】解:(1)甲班的优秀率=2÷5=0.4=40%;乙班的优秀率=3÷5=0.6=60%;(2)甲班5名学生比赛成绩的中位数是97(个);乙班5名学生比赛成绩的中位数是100(个);(3)甲班的平均数=(89+100+96+118+97)÷5=100(个),甲班的方差S甲2=[(89﹣100)2+2+(96﹣100)2+2+(97﹣100)2]÷5=94乙班的平均数=÷5=100(个),乙班的方差S乙2=[2+(96﹣100)2+2+(90﹣100)2+2]÷5=46.4;∴S甲2>S乙2(4)乙班定为冠军.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好.22.在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.【考点】关于x轴、y轴对称的点的坐标.【分析】(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求出x、y的值,从而得到点A的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”写出点A1的坐标,根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”写出点A2的坐标;(2)设经过OA1的直线解析式为y=kx,利用待定系数法求一次函数解析式求出直线解析式,再求出点A2在直线上,然后利用勾股定理列式求出OA1=OA2,最后根据线段中点的定义证明即可.【解答】(1)解:∵点A(2x+y﹣3,x﹣2y)与A1(x+3,y﹣4)关于x轴对称,∴,解得,所以,A(8,3),所以,A1(8,﹣3),A2(﹣8,3);(2)证明:设经过O、A1的直线解析式为y=kx,易得:yOA1=﹣x,又∵A2(﹣8,3),∴A2在直线OA1上,∴A1、O、A2在同一直线上,由勾股定理知OA1=OA2==,∴O为线段A1A2的中点.23.在△ABC中,已知AB=AC=10,BC=16,点D在BC上,且BD=,连接AD,求证:AD⊥AC.【考点】勾股定理;等腰三角形的性质.【分析】过点A作AE⊥BC于E,由等腰三角形的性质得出BE=BC=8,由勾股定理得:AE=6,AD2=AE2+DE2=,DC2=(BC﹣BD)2=,AC2=100,得出AC2+AD2=DC2,证出△DAC为直角三角形即可.【解答】证明:过点A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专题01 热爱生活 热爱写作+作文选材技巧-【同步作文课】六年级语文上册单元写作深度指导(统编版2024·五四学制)
- 幼儿园小班音乐《红眼睛》课件
- 西京学院《影像设备创新设计》2023-2024学年第一学期期末试卷
- 西京学院《数控技术与编程》2021-2022学年期末试卷
- 冰淇淋素描课件
- 核心制度课件
- 管理会计实务 课件情境3、4 谋而后定:企业战略执行的有效工具、做好企业的战略参谋官
- 西华师范大学《体育科学研究方法》2023-2024学年第一学期期末试卷
- 西华师范大学《科学教育学》2022-2023学年第一学期期末试卷
- 移动机器人原理与技术 课件 第7、8章 移动机器人语音识别与控制、移动机器人的通信系统
- 2024-2030年中国it服务管理(itsm)行业发展规划及投资模式分析报告
- 技术合作协议技术引进
- 2024年抗菌药物业务学习培训课件
- 护理操作中法律风险防控
- GB 30253-2024永磁同步电动机能效限定值及能效等级
- 2024年福建福州市仓山区民政局招聘5人历年高频难、易错点500题模拟试题附带答案详解
- 合肥市2023-2024学年七年级上学期期中语文考试卷
- 相反国课件-大班
- 历史西汉建立和“文景之治”课件 2024-2025学年统编版七年级历史上册
- 中核集团在线测评多少道题
- 食品生产许可培训考核试题及答案
评论
0/150
提交评论