第16讲函数模型及其运用(原卷版)_第1页
第16讲函数模型及其运用(原卷版)_第2页
第16讲函数模型及其运用(原卷版)_第3页
第16讲函数模型及其运用(原卷版)_第4页
第16讲函数模型及其运用(原卷版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数模型及其运用【基础知识全通关】1.常见的几种函数模型(1)一次函数模型:y=kx+b(k≠0).(2)反比例函数模型:y=eq\f(k,x)(k≠0).(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).(4)指数函数模型:y=a·bx+c(b>0,b≠1,a≠0).(5)对数函数模型:y=mlogax+n(a>0,a≠1,m≠0).2.指数、对数及幂函数三种增长型函数模型的图象与性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax<xn<ax【重点总结】解答函数应用题的一般步骤:=1\*GB3①审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;=2\*GB3②建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;=3\*GB3③求模:求解数学模型,得出数学结论;=4\*GB3④还原:将数学问题还原为实际问题的意义.【考点研习一点通】考点01:一次函数与分段函数模型1.某同学设想用“高个子系数k”来刻画成年男子的高个子的程度,他认为,成年男子身高160及其以下不算高个子,其高个子系数k应为0;身高190及其以上的是理所当然的高个子,其高个子系数k应为1,请给出一个符合该同学想法、合理的成年男子高个子系数k关于身高的函数关系式___________.【变式1-1】某电影票单价30元,相关优惠政策如下:①团购10张票,享受9折优惠:②团购30张票,享受8折优惠;③购票总额每满500元减80元.每张电影票只能享受一种优惠政策,现需要购买48张电影票,合理设计购票方案,费用最少为()A.1180元 B.1230元 C.1250元 D.1152元【变式探究1-2】某贫困县为了实施精准扶贫计划,使困难群众脱贫致富,对贫困户实行购买饲料优惠政策如下:(1)若购买饲料不超过2000元,则不给予优惠;(2)若购买饲料超过2000元但不超过5000元,则按标价给予9折优惠;(3)若购买饲料超过5000元,其5000元内的给予9折优惠,超过5000元的部分给予7折优惠.某贫穷户购买一批饲料,有如下两种方案:方案一:分两次付款购买,分别为2880元和4850元;方案二:一次性付款购买.若取用方案二购买此批饲料,则比方案一节省()元A.540 B.620 C.640 D.800考点02:二次函数模型2、山东省寿光市绿色富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在本市收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?【变式2-1】共享单车是城市慢行系统的一种创新模式,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一辆新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(400x-\f(1,2)x2,0<x≤400,,80000,x>400,))其中x是新样式单车的月产量(单位:辆),利润=总收益-总成本.考点03:指数函数模型3、“一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y(单位:小时)与储藏温度x(单位:)满足函数关系(a,b为常数),若该果蔬在6的保鲜时间为216小时,在24的保鲜时间为8小时,那么在12时,该果蔬的保鲜时间为()小时.A.72 B.36 C.24 D.16【变式3-1】一个放射性物质不断衰变为其他物质,每经过一年就有的质量发生衰变,剩余质量为原来的.若该物质余下质量不超过原有的,则至少需要的年数是()A. B. C. D.考点04:对数函数模型4、在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2−m1=,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为()A.1010.1 B.10.1C.lg10.1 D.10−10.1【变式4-1】科学家以里氏震级来度量地震的强度,若设为地震时所散发出来的相对能量程度,则里氏震级可定义为.2021年3月13日下午江西鹰潭余江区发生里氏级地震,2020年1月1日四川自贡发生里氏级地震,则自贡地震所散发出来的能量是余江地震所散发出来的能量的()倍.A. B. C. D.【变式4-2】声音的强弱可以用声波的能流密度来计算,叫做声强.通常人耳能听到声音的最小声强为(瓦/平方米).对于一个声音的声强,用声强与比值的常用对数的10倍表示声强的声强级,单位是“分贝”,即声强的声强级是(分贝).声音传播时,在某处听到的声强与该处到声源的距离的平方成反比,即(为常数).若在距离声源15米的地方,听到声音的声强级是20分贝,则能听到该声音(即声强不小于)的位置到声源的最大距离为()A.100米 B.150米 C.200米 D.米考点05:分式函数模型5、上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足,,经测算,在某一时段,地铁载客量与发车时间间隔t相关,当时地铁可达到满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为.(1)求的解析式;(2)若该时段这条线路每分钟的净收益为(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?【变式5-1】某工厂有旧墙一面长,现准备利用这面旧墙建造平面图形为矩形,面积为的厂房.工程条件是:①建新墙的费用为元;②修旧墙的费用是元;③拆去旧墙,用所得的材料建新墙的费用为元.利用旧墙的一段为矩形厂房的一面边长:(1)向如何利用旧墙,即为多少时建墙费用最省,最省费用是多少?(2)由于地理位置的限制,厂房另一边长(旧墙的临边)不能超过,如何利用旧墙使总费用最省?【考点易错】1.已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品x千件(0<x≤25)并全部销售完,每千件的销售收入为R(x)(单位:万元),且R(x)=108−(1)写出年利润f(x)(单位:万元)关于年产量x(单位:千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一产品的生产中所获年利润最大?(注:年利润=年销售收入-年总成本)2.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜地将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W(单位:千克)与肥料费用10x(单位:元)满足如下关系:W(x)=5(x15元/千克,且销路畅通供不应求.记该珍稀水果树的单株利润为f(x)(单位:元).(1)求f(x)的函数关系式;(2)当投入的肥料费用为多少时,该珍稀水果树的单株利润最大?最大利润是多少?3.某公司计划投资开发一种新能源产品,预计能获得10万元~1000万元的收益.现准备制定一个对开发科研小组的奖励方案:资金y(单位:万元)随收益x(单位:万元)的增加而增加,且资金总数不超过9万元,同时资金总数不超过收益的20%.(1)若建立奖励方案的函数模型为y=f(x),试研究这个函数的定义域、值域和yx(2)现有两个奖励方案的函数模型:①y=x1504.某市一家商场的新年最高促销奖设立了三种领奖方式,这三种领奖方式如下.方式一:每天到该商场领取奖品,价值为40元.方式二:第一天领取的奖品的价值为10元,以后每天比前一天多10元.方式三:第一天领取的奖品的价值为0.4元,以后每天的回报比前一天翻一番.若三种领奖方式对应的奖品总价值均不超过1200元,则促销奖的领奖活动最长设置为几天?在领奖活动最长的情况下,你认为哪种领奖方式让领奖者受益最多?【巩固提升】1.一种药在病人血液中的量保持在不低于1500mg,才有疗效;而低于500mg,病人就危险.现给某病人的静脉注射了这种药2500mg,如果药在血液中以每小时的比例衰减,则再向这种病人的血液补充这种药物的时间范围是()A.B.C. D.2.视力检测结果有两种记录方式,分别是小数记录与五分记录,其部分数据如下表:小数记录五分记录现有如下函数模型:①,②,表示小数记录数据,表示五分记录数据,请选择最合适的模型解决如下问题:小明同学检测视力时,医生告诉他的视力为,则小明同学的小数记录数据为(附,,)()A. B. C. D.3.生物学家为了了解滥用抗生素对生态环境的影响,常通过检测水中生物体内抗生素的残留量来作出判断.已知水中某生物体内抗生素的残留量(单位:mg)与时间(单位:年)近似满足数学函数关系式,其中为抗生素的残留系数.经测试发现,当时,,则抗生素的残留系数的值约为()A.10 B. C.100 D.4.某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了()A.0.33米 B.0.42米 C.0.39米 D.0.43米5.在新冠肺炎疫情初期,部分学者利用逻辑斯蒂增长模型预测某地区新冠肺炎患者数量(的单位:天),逻辑斯蒂增长模型具体为,其中为环境最大容量.当时,标志着已初步遏制疫情,则约为()A.63 B.65 C.66 D.696.地震震级根据地震仪记录的地震波振幅来测定,一般采用里氏震级标准.震级M用距震中100千米处的标准地震仪所记录的地震波最大振幅值的对数来表示.里氏震级的计算公式为:(其中常数是距震中100公里处接收到的0级地震的地震波的最大振幅;是指我们关注的这次地震在距震中100公里处接收到的地震波的最大振幅).地震的能量E是指当地震发生时,以地震波的形式放出的能量.(单位:焦耳),其中M为地震震级.已知甲地地震产生的能量是乙地地震产生的能量的倍,若乙地地震在距震中100公里处接收到的地震波的最大振幅为A,则甲地地震在距震中100公里处接收到的地震波的最大振幅为()A.2A B.10A C.100A D.1000A7.为了保护水资源,提倡节约用水,某城市对居民实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过的部分3元/超过但不超过的部分6元/超过的部分9元/若某户居民本月交纳的水费为54元,则此户居民的用水量为()A. B. C. D.8.年初我国脱贫攻坚战取得了全面胜利,现行标准下区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务.经过数据分析得到某山区贫困户年总收入与各项投入之间的关系是:贫困户年总收入y(元)=1200+年扶贫资金(元)+年自投资金(元)自投劳力(个).若一个贫困户家中只有两个劳力,年自投资金元,以后每年的自投资金均比上一年增长,年获得的扶贫资金为元,以后每年获得的扶贫资金均比上一年减少元,则该贫困户在年的年总收入约为()A.元 B.元 C.元 D.元9.声强级(单位:dB)由公式给出,其中为声强(单位:W/m2)一般正常人听觉能忍受的最高声强级为120dB,平时常人交谈时声强级约为60dB,那么一般正常人能忍受的最高声强是平时常人交谈时声强的()A.104倍 B.105倍 C.106倍 D.107倍10.砖雕是江南古建筑雕刻中很重要的一种艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形截去同心扇形所得部分.已知扇环周长,大扇形半径,设小扇形半径,弧度,则①关于x的函数关系式_________.②若雕刻费用关于x的解析式为,则砖雕面积与雕刻费用之比的最大值为________.11.据观测统计,某湿地公园某种珍稀鸟类以平均每年4%的速度增加.按这个增长速度,大约经过___________年以后,这种鸟类的个数达到现有个数的4倍或4倍以上.(结果保留整数)(参考数据:)12.某商贸公司售卖某种水果.经市场调研可知:在未来天内,这种水果每箱的销售利润(单位:元)与时间,单位:天)之间的函数关系式为,且日销售量(单位:箱)与时间之间的函数关系式为①第天的销售利润为__________元;②在未来的这天中,公司决定每销售箱该水果就捐赠元给“精准扶贫”对象.为保证销售积极性,要求捐赠之后每天的利润随时间的增大而增大,则的最小值是__________.13.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天 C.2.7天 D.3.6天14.加工爆米花时,爆开且不糊的粒数占加工总

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论