版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
对称式和轮换对称式一.填空题(共10小题)1.已知,a,b,c是△ABC的边,且,,,则此三角形的面积是:_________.2.已知实数a、b、c,且b≠0.若实数x1、x2、y1、y2满足x12+ax22=b,x2y1﹣x1y2=a,x1y1+ax2y2=c,则y12+ay22的值为_________.3.已知正数a,b,c,d,e,f满足=4,=9,=16,=;=,=,则(a+c+e)﹣(b+d+f)的值为_________.4.已知bc﹣a2=5,ca﹣b2=﹣1,ac﹣c2=﹣7,则6a+7b+8c=_________.5.x1、x2、y1、y2满足x12+x22=2,x2y1﹣x1y2=1,x1y1+x2y2=3.则y12+y22=_________.6.设a=,b=,c=,且x+y+z≠0,则=_________.7.已知,,其中a,b,c为常数,使得凡满足第一式的m,n,P,Q,也满足第二式,则a+b+c=_________.8.设2(3x﹣2)+3=y,2(3y﹣2)+3=z,2(3z﹣2)+3=u且2(3u﹣2)+3=x,则x=_________.9.若数组(x,y,z)满足下列三个方程:、、,则xyz=_________.10.设x、y、z是三个互不相等的数,且x+=y+=z+,则xyz=_________.二.选择题(共2小题)11.已知,,,则的值是() A. B. C. D.12.如果a,b,c均为正数,且a(b+c)=152,b(c+a)=162,c(a+b)=170,那么abc的值是() A.672 B.688 C.720 D.750三.解答题(共1小题)13.已知b≥0,且a+b=c+1,b+c=d+2,c+d=a+3,求a+b+c+d的最大值.
答案与评分标准一.填空题(共10小题)1.已知,a,b,c是△ABC的边,且,,,则此三角形的面积是:.考点:对称式和轮换对称式。分析:首先将将三式全部取倒数,然后再将所得三式相加,即可得:++=+++,再整理,配方即可得:(﹣1)2+(﹣1)2+(﹣1)2=0,则可得此三角形是边长为1的等边三角形,则可求得此三角形的面积.解答:解:∵a=,b=,c=,∴全部取倒数得:=+,=+,=+,将三式相加得:++=+++,两边同乘以2,并移项得:﹣+﹣+﹣+3=0,配方得:(﹣1)2+(﹣1)2+(﹣1)2=0,∴﹣1=0,﹣1=0,﹣1=0,解得:a=b=c=1,∴△ABC是等边三角形,∴△ABC的面积=×1×=.故答案为:.点评:此题考查了对称式和轮换对称式的知识,考查了配方法与等边三角形的性质.此题难度较大,解题的关键是将三式取倒数,再利用配方法求解,得到此三角形是边长为1的等边三角形.2.已知实数a、b、c,且b≠0.若实数x1、x2、y1、y2满足x12+ax22=b,x2y1﹣x1y2=a,x1y1+ax2y2=c,则y12+ay22的值为.考点:对称式和轮换对称式。分析:∵x12+ax22=b①,x2y1﹣x1y2=a②,x1y1+ax2y2=c③.首先将第②、③组合成一个方程组,变形把x1、x2表示出来,在讲将x1、x2的值代入①,通过化简就可以求出结论.解答:解:∵x12+ax22=b①,x2y1﹣x1y2=a②,x1y1+ax2y2=c③.由②,得④,把④代入③,得⑤==∴=++=∵x+y+z≠0∴原式=1.故答案为:1.点评:本题是一道代数式的化简求值的题,考查了代数式的对称式和轮换对称式在化简求值中的运用.具有一定的难度.7.已知,,其中a,b,c为常数,使得凡满足第一式的m,n,P,Q,也满足第二式,则a+b+c=.考点:对称式和轮换对称式。分析:令P=(m+9n)x,Q=(9m+5n)x(x≠0),由可得:==,解出a、b和c的值即可.解答:解:令P=(m+9n)x,Q=(9m+5n)x(x≠0),又知,即==,解得a=2,c=,b=﹣,即a+b+c=2﹣+=.故答案为.点评:本题主要考查对称式和轮换对称式的知识点,解答本题的关键是令P=(m+9n)x,Q=(9m+5n)x,此题难度不大.8.设2(3x﹣2)+3=y,2(3y﹣2)+3=z,2(3z﹣2)+3=u且2(3u﹣2)+3=x,则x=.考点:对称式和轮换对称式。专题:计算题。分析:先化简各式,将各式联立相加,然后分别将y、z和u关于x的式子代入消去y、z和u,即可求出x的值.解答:解:将各式化简得:,(1)+(2)+(3)+(4)得:x+y+z+u=⑤,分别将y、z和u关于x的式子代入⑤中,得:x+6x﹣1+6(6x﹣1)﹣1+=,解得:x=.故答案为:.点评:本题考查对称式和轮换对称式的知识,难度适中,解题关键是将y、z和u关于x的式子代入消除y、z和u.9.若数组(x,y,z)满足下列三个方程:、、,则xyz=162.考点:对称式和轮换对称式。分析:将3个方程分别分别由第一个方程除以第二方程,再由第一个方程除以第三个方程.就可以把x、y用含z的式子表示出来,然后代入第一个方程就可以求出z、x、y的值,从而求出其结果.解答:解:由①÷②,得y=④由①÷③,得x=⑤把④、⑤代入①,得,解得z=9∴y=6,x=3∴原方程组的解为:∴xyz=3×6×9=162.故答案为:162.点评:本题是一道三元高次分式方程组,考查了运用分式方程的轮换对称的特征解方程的方法,解方程组的过程以及求代数式的值的方法.10.设x、y、z是三个互不相等的数,且x+=y+=z+,则xyz=±1.考点:对称式和轮换对称式。专题:计算题。分析:分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的情形,由左边的两个等式可得出zy=,同理可得出zx=,xy=,三式相乘可得出xyz的值.解答:解:由已知x+=y+=z+,得出x+=y+,∴x﹣y=﹣=,∴zy=①同理得出:zx=②,xy=③,①×②×③得x2y2z2=1,即可得出xyz=±1.故答案为:±1.点评:此题考查了对称式和轮换式的知识,有一定的难度,解答本题的关键是分别求出yz、zx、xy的表达式,技巧性较强,要注意观察所给的等式的特点.二.选择题(共2小题)11.已知,,,则的值是() A. B. C. D.考点:对称式和轮换对称式。专题:计算题。分析:先将上面三式相加,求出+,+,+,再将化简即可得出结果.解答:解:∵,∴+=15①,∵,∴+=17②;∵,∴+=16③,∴①+②+③得,2(++)=48,∴++=24,则===,故选D.点评:本题考查了对称式和轮换对称式,是基础知识要熟练掌握.12.如果a,b,c均为正数,且a(b+c)=152,b(c+a)=162,c(a+b)=170,那么abc的值是() A.672 B.688 C.720 D.750考点:对称式和轮换对称式。分析:首先将a(b+c)=152,b(c+a)=162,c(a+b)=170分别展开,即可求得ab+ac=152①,bc+ba=162②,ca+cb=170③,然后将三式相加,即可求得ab+bc+ca值,继而求得bc,ca,ab的值,将它们相乘再开方,即可求得abc的值.解答:解:∵a(b+c)=152,b(c+a)=162,c(a+b)=170,∴ab+ac=152①,bc+ba=162②,ca+cb=170③,∴①+②+③得:ab+bc+ca=242④,④﹣①得:bc=90,④﹣②得:ca=80,④﹣③得:ab=72,∴bc•ca•ab=90×80×72,即(abc)2=7202,∵a,b,c均为正数,∴abc=720.故选C.点评:此题考查了对称式和轮换对称式的知识,考查了方程组的求解方法.此题难度较大,解题的关键是将ab,ca,bc看作整体,利用整体思想与方程思想求解.三.解答题(共1小题)13.已知b≥0,且a+b=c+1,b+c=d+2,c+d=a+3,求a+b+c+d的最大值.考点:对称式和轮换对称式。分析:分别表示出a,b,c,d,然后通过分别代入,使最后成为只含b的代数式,b的范围知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暑期继续教育学习总结
- 工厂月工作总结(10篇)
- 禁止焚烧秸秆倡议书8篇
- 某公司环境绿化管理制度
- 湖南省永州市(2024年-2025年小学五年级语文)人教版摸底考试(下学期)试卷及答案
- 机械能和内能教案
- 2023年高强2号玻璃纤维布资金需求报告
- 《停车场出场电子不停车缴费系统(ETC)碳减排核算方法(征求意见稿)》及编制说明
- 上海市市辖区(2024年-2025年小学五年级语文)人教版能力评测(下学期)试卷及答案
- 2024年广东公务员考试申论试题(县镇卷)
- 【导学案】在奉献中成就精彩人生 2024-2025学年七年级道德与法治上册(统编版2024)
- 期中试卷(1-4单元)(试题)-2024-2025学年六年级上册数学人教版
- SLT824-2024 水利工程建设项目文件收集与归档规范
- 2024至2030年中国眼部护理行业运营现状与未来需求趋势分析报告
- 2024年人教版小学三年级科学(上册)期中试卷附答案
- 智能安防监控系统维护手册
- 七年级语文人教部编版(上册)《课外古诗词诵读》之《行军九日思长安故园》课件(26张)
- 2022-2023学年北京市朝阳外国语学校七年级(上)期中数学试卷【含解析】
- 研究生考试考研思想政治理论(101)2025年自测试题及解答
- 煤矿应急叫应、回应、响应机制
- 圆圈正义读书分享课件
评论
0/150
提交评论