纤维素酶的生产方法及在食品行业的应用_第1页
纤维素酶的生产方法及在食品行业的应用_第2页
纤维素酶的生产方法及在食品行业的应用_第3页
纤维素酶的生产方法及在食品行业的应用_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

纤维素酶的生产方法及在食品行业的应用纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。纤维素酶在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。编号:EC3.2.1.4。由多种水解酶组成的一个复杂酶系,自然界中很多真菌都能分泌纤维素酶。习惯上,将纤维素酶分成三类:C1酶、Cx酶和p葡糖苷酶。C1酶是对纤维素最初起作用的酶,破坏纤维素链的结晶结构。Cx酶是作用于经C1酶活化的纤维素、分解P-1,4-糖苷键的纤维素酶。。葡糖苷酶可以将纤维二糖、纤维三糖及其他低分子纤维糊精分解为葡萄糖。纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切P-葡聚糖酶、内切P-葡聚糖酶和P-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。由于纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点纤维素酶的来源纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As?pergillus)和青霉属(Penicillium),特别是绿色木霉(Trichodermavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。纤维素酶广泛存在于自然界的生物体中。细菌、真菌、动物体内等都能产生纤维素酶。一般用于生产的纤维素酶来自于真菌,比较典型的有木酶属(Trichoderma)、曲霉属(Aspergillus)和青霉属(Penicillium)。产生纤维素酶的菌种容易退化,导致产酶能力降低。纤维素酶在食品行业和环境行业均有广泛应用。在进行酒精发酵时,纤维素酶的添加可以增加原料的利用率,并对酒质有所提升。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶(amylase)、蛋白酶(Protease)等。纤维素酶种类繁多,来源很广。不同来源的纤维素酶其结构和功能相差很大。由于真菌纤维素酶产量高、活性大,故在畜牧业和饲料工业中应用的纤维素酶主要是真菌纤维素酶。纤维素酶的生产方法目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。1固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。2液体发酵法是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60°C。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。纤维素酶菌种选育菌种选育是纤维素酶生产的基础性工作,国内外许多专家进行了大量研究,为了生产高质量的纤维素酶产品, 生家林等(1996)在吸收国内外经验的基础上,先后引进了绿色木霉木10、绿色木霉Sn-91014、康氏木霉NT-15、黑曲霉XX-15A,在此基础上,采用了紫外线、特定电磁波辐射、线性加速器,亚硝基胍等物理、化学的诱变方法,获得了高产菌株NT15-H、NT15-H1、XT-15H、XT-15H1。其中木霉NT-15H固体培养活力经轻工部食品质量监督检测中心南京站检测表明, 滤纸活力为3670u/g,C1-酶活力24460u/g,Cx-酶活力1800u/g,已达到国际先进水平。此菌种在工厂化生产中性能稳定。张苓花等(1998)采用康氏木霉W-925,J-931,经过浓度为2%硫酸二乙酯和紫外线(15W、30cm、2min)复合诱变后,得到了产酶活性高的Wu-932菌种,该菌种CMC糖化力达到2975,滤纸糖酶活性为531,比出发菌W-925分别提高了100%和81%。化工部饲料添加剂技术服务中心王成书等(1997)采用该中心的里氏木霉A3先进行紫外线和亚硝基胍复合诱变后,将处理过的抱子接种于纤维双层平板上,30C培养5-8天,15C放置7-10天,挑选透明圈直径和菌落直径比较大的单菌落进行三角瓶瞄发酵再筛选,得到了产纤维素酶活力很高的里氏木霉 91-3菌株。纤维素酶菌种易退化,退化后其产酶力明显降低,其原因可能有三个方面:①经诱变筛选的菌种发生回复突变。②自然负突变。③菌种长时间低温斜面保藏,会在分生抱子上长出次生菌丝,而次生菌丝所形成的分生抱子生命力弱,这可能是菌种退化的主要原因。为了避免纤维素酶菌种退化,张苓花等(1998)报道,采用砂土管保藏菌种。即将过筛洗净的砂子与土以3:2比例混合分装在试管内,用1kg/cm2压力灭菌30分钟共三次,将欲保存的斜面菌种制备成 1000ml抱子悬浮液,每个砂土管注入0.5ml,摇匀,放入盛有无水CaCl2真空干燥器内保存。经测定,在所测的121天内,酶的活性基本不变;酶活性下降50%的时间,由常规方法的60天延长至160天,明显地减缓了菌种退化速度。发酵工艺纤维素酶的生产工艺主要有两种,即固体发酵和液体发酵,其工艺如下:1、影响产酶量和活力的因素:影响纤维素酶产量和活力的因素很多,除菌种外,还有培养温度、pH、水分、基质、培养时间等。这些因素不是孤立的,而是相互联系的。 张中良等(1997)采用均匀设计Cl12(1210),以绿色木霉(T.ViriclePers.expr)为菌种,研究了影响产纤维素酶的五大因素对产酶量和活力的作用,认为基质粗纤维含量为40%、初始pH7.5、加水4倍、在26-31C条件下培养45h可获得最大产酶量26mg/g和CMC酶活力20mg/g.h。王成华等(1997)也研究了其诱变筛选的里氏木霉91-3的产酶条件,结果表明该菌种以7:3的秸秆粉和麦麸,另添加4%硫酸铵、0.4%磷酸二氢钾、0.1%硫酸镁为最佳培养基,28-32°C为适宜培养温度,30°C为最佳温度,4%为最佳接种量,96h到达发酵高峰。张苓花等(1998)研究了以康氏木霉W-925为出发菌,经诱变后得到的Wu-932纤维素酶高产菌的最佳发酵条件。结果表明,以1:2的麦麸和稻草粉为培养基,5%的接种量,稻草粉碎平均长度3-5mm,初始pH4-5,温度在28-35C,发酵时间72h为最佳发酵条件。2、污染菌的控制:目前,在用康氏木霉发酵生产饲用纤维素酶中,普遍存在一种俗称的'白毛菌”污染。污染后轻者酶活性下降,重者发酵失败。为此,研究控制发酵污染意义很大。张苓花等(1998)研究“白毛菌”的菌落特征、来源、生长和生理特征及控制方法,找到了一种与康氏木霉Wu-932呈共生关系,而与“白毛菌”呈竞争性抑制关系的热带假丝酵母菌J-931。利用此菌进行混合发酵,可有效地控制“白毛菌”的污染。其微生态关系如下:纤维素酶的应用1制酒在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,加快发芽,减少糖化液中单一葡萄糖含量,改进过滤性能,有利于酒精蒸馏。2酱油酿造在酱油的酿造过程中添加纤维素酶、可使大豆类原料的细胞膜膨胀软化破坏,使包藏在细胞中的蛋白质和碳水化合物释放,这样既可提高酱油浓度,改善酱油质量,又可缩短生产周期,提高生产率,并且使其各项主要指标提高3%。3饮料加工用纤维素酶处理豆腐渣后接入乳酸菌进行发酵,可制得营养、品味俱佳的发酵饮料。将纤维素酶应用于果蔬榨汁、花粉饮料中,可提高汁液的提取率(约10%)和促进汁液澄清,使汁液透明,不沉淀,提高可溶性固形物的含量,并可将果皮综合利用。目前,有报道已成功地将柑橘皮渣酶解制取全果饮料,其中的粗纤维有50%降解为短链低聚糖,即全果饮料中的膳食纤维,具有一定的保健医疗价值。4纤维废渣的回收利用应用纤维素酶或微生物把农副产品和城市废料中的纤维转化成葡萄糖、酒精和单细胞蛋白质等,这对于开辟食品工业原料来源,提供新能源和变废为宝具有十分重要的意义。此外,在果品和蔬菜加工过程中如果采用纤维素酶适当处理,可使植物组织软化膨松,能提高可消化性和口感。将纤维素酶用于处理大豆,可促使其脱皮,同时,由于它能使细胞壁破坏,使包含其中的蛋白质、油脂完全分离,增加其从大豆和豆饼中提取优质水溶性蛋白质和油脂的获得率,既降低了成本,缩短了时间,又提高了产品质量。植物纤维原料是地球上最丰富、最廉价而又可再生的资源,其主要成分是纤维素和半纤维素,纤维素和半纤维素的利用一直是国际国内的研究热点课题。利用的途径和整体思路是利用纤维素酶和半纤维素酶先将纤维素和半纤维素降解成可发酵糖,进而通过发酵制取酒精、单细胞蛋白、有机酸、甘油、丙酮及其他重要的化学化工原料。此外,纤维素、半纤维素通过纤维素酶的限制性降解还可制备成功能性食品添加剂,如微晶纤维素、膳食纤维和功能性低聚糖等。总之,纤维素酶具有非常广阔的应用前景,但由于液态发酵生产技术含量较高,在大规模生产上还有一定的困难,因此对纤维素酶液态发酵的研究与开发具有重要的现实意义。今后若能加强这方面的研究,则可以使之早日进入工业化生产,一方面可以提高纤维素酶的产量和质量;另一方面可以较好地解决纤维素的生物转化问题,创造良好的社会效益和经济效X益.0展望我国是一个饲料资源十分紧张的国家,土地少、人口多,人畜争粮的矛盾十分突出。要保持我国饲料工业和畜牧业的持续发展,必须解决好饲料问题,否则将严重制约其发展。纤维素是自然界中十分丰富的资源,是800-1200个葡萄糖分子聚合而成。因此,可通过微生物发酵充分利用农副产品下脚料、秸秆、糠生产纤维素酶添加剂,用于提高畜禽生产性能,提高饲料利用率,改善饲料的营养价值,降低饲料成本和提高经济效益,具有广阔的开发前景,今后应进一步加强纤维素酶研究和开发工作。主要有如下几方面:1、 进一步加强纤维素酶的作用机制研究。纤维素酶应用于饲料,作用于动物消化道,其机制尚未清楚。从理论上决定其添加量还很困难,目前只能从实验结果来决定,受影响因素很多,往往效果不够理想。对于单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论