2023年陕西省咸阳市名校数学八年级第二学期期末教学质量检测试题含解析_第1页
2023年陕西省咸阳市名校数学八年级第二学期期末教学质量检测试题含解析_第2页
2023年陕西省咸阳市名校数学八年级第二学期期末教学质量检测试题含解析_第3页
2023年陕西省咸阳市名校数学八年级第二学期期末教学质量检测试题含解析_第4页
2023年陕西省咸阳市名校数学八年级第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④2.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线x0经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为().A.(3,8) B.(12,) C.(4,8) D.(12,4)3.在函数的图象上的点是()A.(-2,12) B.(2,-12) C.(-4,-6) D.(4,-6)4.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个5.若一个三角形的三边长为,则使得此三角形是直角三角形的的值是()A. B. C. D.或6.如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为()A.7 B.9 C.11 D.147.如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.5 C.6 D.108.若把分式的x、y同时扩大3倍,则分式值()A.不变 B.扩大为原来的3倍 C.缩小为原来的 D.扩大为原来的9倍9.若分式有意义,则x的取值范围是()A.x=1 B.x≠1 C.x>1 D.x<110.如果关于x的分式方程ax+1-3=1-xx+1有负数解,且关于y的不等式组A.﹣2 B.0 C.1 D.3二、填空题(每小题3分,共24分)11.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.小红的作法如下:如图,①分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点C;②再分别以点A和点B为圆心,大于AB的长为半径(不同于①中的半径)作弧,两弧相交于点D,使点D与点C在直线AB的同侧;③作直线CD.所以直线CD就是所求作的垂直平分线.老师说:“小红的作法正确.”请回答:小红的作图依据是_____.12.如图,点在的平分线上,,垂足为,点在上,若,则__.13.一次函数不经过第三象限,则k的取值范围是______14.某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每人采集到5件,则这个小组平均每人采集标本___________件.15.某地出租车行驶里程()与所需费用(元)的关系如图.若某乘客一次乘坐出租车里程12,则该乘客需支付车费__________元.16.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.17.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为________(填序号)18.已知a=,b=,则a2-2ab+b2的值为____________.三、解答题(共66分)19.(10分)(1)如图①所示,将绕顶点按逆时针方向旋转角,得到,,分别与、交于点、,与相交于点.求证:;(2)如图②所示,和是全等的等腰直角三角形,,与、分别交于点、,请说明,,之间的数量关系.20.(6分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.21.(6分)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?22.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.23.(8分)如图,矩形的对角线交于点,点是矩形外的一点,其中.(1)求证:四边形是菱形;(2)若,连接交于于点,连接,求证:平分.24.(8分)(1)(发现)如图1,在中,分别交于,交于.已知,,,求的值.思考发现,过点作,交延长线于点,构造,经过推理和计算能够使问题得到解决(如图2).请回答:的值为______.(2)(应用)如图3,在四边形中,,与不平行且,对角线,垂足为.若,,,求的长.(3)(拓展)如图4,已知平行四边形和矩形,与交于点,,且,,判断与的数量关系并证明.25.(10分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)若EG=EH,DC=8,AD=4,求AE的长.26.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.2、B【解析】

过点B作轴于点,由可求出菱形的面积,由点的坐标可求出的长,根据勾股定理求出的长,故可得出点的坐标,对角线相交于D点可求出点坐标,用待定系数法可求出双曲线的解析式,与的解析式联立,即可求出点的坐标.【详解】过点B作轴于点,,点的坐标又菱形的边长为10,在中,又点是线段的中点,点的坐标为又直线的解析式为联立方程可得:解得:或,点的坐标为故选:B.【点睛】本题主要考查反比例函数与一次函数以及菱形综合,熟练的掌握菱形面积求法是解决本题的关键.3、C【解析】

根据横坐标与纵坐标的乘积为24即可判断.【详解】解:∵函数的图象上的点的横坐标与纵坐标的乘积为24,又∵-2×12=-24,2×(-12)=-24,-4×(-6)=24,4×(-6)=-24,∴(-4,-6)在的图象上,故选:C.【点睛】本题考查反比例函数图象上的点的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.4、B【解析】

根据中心对称的概念对各图形分析判断即可得解.【详解】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【解析】

根据勾股定理即可求解.【详解】当4为斜边时,x=当x为斜边是,x=故选D.【点睛】此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.6、B【解析】

先确定出CD=9,再利用角平分线上的点到两边的距离相等,即可得出结论.【详解】解:

∵CD:BD=3:1.

设CD=3x,则BD=1x,

∴BC=CD+BD=7x,

∵BC=21,

∴7x=21,

∴x=3,

∴CD=9,

过点D作DE⊥AB于E,

∵AD是∠BAC的平分线,∠C=90°,

∴DE=CD=9,

∴点D到AB边的距离是9,

故选B.【点睛】本题考查了角平分线的性质,线段的和差,解本题的关键是掌握角平分线的性质定理.7、B【解析】

∵AD平分∠CAB,

∴点B关于AD的对称点B′在线段AC上,作B′N′⊥AB于N′交AD于M′.

∵BM+MN=B′M+MN,

∴当M与M′重合,N与N′重合时,BM+MN的值最小,最小值为B′N′,

∵AD垂直平分BB′,

∴AB′=AB=1,

∵∠B′AN′=41°,

∴△AB′N′是等腰直角三角形,

∴B′N′=1

∴BM+MN的最小值为1.

故选B.【点睛】本题考查轴对称-最短问题、垂线段最短、等腰直角三角形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.8、B【解析】

将,扩大3倍,即将,用,代替,就可以解出此题.【详解】解:,分式值扩大3倍.故选:B.【点睛】此题考查的是对分式的性质的理解和运用,扩大或缩小倍,就将原来的数乘以或除以后代入计算是解题关键.9、B【解析】

根据分式有意义的条件即可求出答案.【详解】由分式有意义的条件可知:x-1≠0,∴x≠1,故选:B.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.10、B【解析】

解关于y的不等式组2(a-y)⩽-y-43y+42<y+1,结合解集无解,确定a的范围,再由分式方程ax+1-3=【详解】由关于y的不等式组2(a-y)⩽-y-43y+42<y+1∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵ax+1-3=1-xx+1而关于x的分式方程ax+1∴a﹣4<1∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.二、填空题(每小题3分,共24分)11、到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【解析】分析:根据线段垂直平分线的作法即可得出结论.详解:如图,∵由作图可知,AC=BC=AD=BD,∴直线CD就是线段AB的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.点睛:本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.12、1.【解析】

作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.【详解】解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=1,故答案为:1.【点睛】本题考查了角平分线的性质,解题的关键是根据角平分线的性质求得EG的长,难度不大.13、【解析】

根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.【详解】解:∵一次函数y=kx+2的图象不经过第三象限,∴一次函数y=kx+2的图象经过第一、二、四象限,∴k<1.故答案为:k<1.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.14、4【解析】分析:根据加权平均数的计算公式计算即可.详解:.故答案为:4.点睛:本题重点考查了加权平均数的计算公式,加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).15、10【解析】

根据函数图象,设y与x的函数关系式为y=kx+b,运用待定系数法即可得到函数解析式,再将x=11代入解析式就可以求出y的值.【详解】解:由图象知,y与x的函数关系为一次函数,并且经过点(1,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+1.将x=11代入一次函数解析式,故出租车费为10元.故答案为:10.【点睛】此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.16、1【解析】

估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17、②①④⑤③【解析】根据统计调查的一般过程:①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为:②①④⑤③.18、8【解析】

二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.【详解】a2-2ab+b2=(a-b)2=.故答案为8.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式是解题的关键.三、解答题(共66分)19、(1)见解析;(1)FG1=BF1+GC1.理由见解析【解析】

(1)利用ASA证明△EAF≌△BAH,再利用全等三角形的性质证明即可;

(1)结论:FG1=BF1+GC1.把△ABF旋转至△ACP,得△ABF≌△ACP,再利用三角形全等的知识证明∠ACP+∠ACB=90°,根据勾股定理进而可以证明BF、FG、GC之间的关系.【详解】(1)证明:如图①中,

∵AB=AC=AD=AE,∠CAB=∠EAD=90°,

∴∠EAF=∠BAH,∠E=∠B=45°,

∴△EAF≌△BAH(ASA),

∴AH=AF;

(1)解:结论:GF1=BF1+GC1.

理由如下:如图②中,把△ABF旋转至△ACP,得△ABF≌△ACP,

∵∠1=∠4,AF=AP,CP=BF,∠ACP=∠B,

∵∠DAE=45°

∴∠1+∠3=45°,

∴∠4+∠3=45°,

∴∠1=∠4+∠3=45°,

∵AG=AG,AF=AP,

∴△AFG≌△AGP(SAS),

∴FG=GP,

∵∠ACP+∠ACB=90°,

∴∠PCG=90°,

在Rt△PGC中,∵GP1=CG1+CP1,

又∵BF=PC,GP=FG,

∴FG1=BF1+GC1.【点睛】本题考查旋转变换,等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20、(1)①;②1;(2)AD=BC.【解析】

(1)①首先证明△ADB'是含有30°的直角三角形,可得ADAB'即可解决问题;②首先证明△BAC≌△B'AC',根据直角三角形斜边中线定理即可解决问题;(2)结论:ADBC.如图1中,延长AD到M,使得AD=DM,连接B'M,C'M,首先证明四边形AC'MB'是平行四边形,再证明△BAC≌△AB'M,即可解决问题.【详解】(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB'=AC'.∵DB'=DC',∴AD⊥B'C'.∵∠BAC=60°,∠BAC+∠B'AC'=180°,∴∠B'AC'=120°,∴∠B'=∠C'=30°,∴ADAB'BC.故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B'AC'=180°,∴∠B'AC'=∠BAC=90°.∵AB=AB',AC=AC',∴△BAC≌△B'AC',∴BC=B'C'.∵B'D=DC',∴ADB'C'BC=1.故答案为1.(2)结论:ADBC.理由:如图1中,延长AD到M,使得AD=DM,连接B'M,C'M.∵B'D=DC',AD=DM,∴四边形AC'MB'是平行四边形,∴AC'=B'M=AC.∵∠BAC+∠B'AC'=180°,∠B'AC'+∠AB'M=180°,∴∠BAC=∠MB'A.∵AB=AB',∴△BAC≌△AB'M,∴BC=AM,∴ADBC.【点睛】本题是四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、直角三角形30度角性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21、不是,理由见解析.【解析】

先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.【详解】解:如图,设梯子下滑至CD,∵Rt△OAB中,AB=2.5m,AO=2.4m,

∴OB=m,同理,Rt△OCD中,

∵CD=2.5m,OC=2.4-0.4=2m,

∴OD=m,∴BD=OD-OB=1.5-0.7=0.8(m).

答:梯子底端B向外移了0.8米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22、-1【解析】

先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式.【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.23、(1)见解析;(2)见解析.【解析】

(1)由矩形可知OA=OB,由AE∥BD,BE∥AC,即可得出结论;(2)利用矩形和菱形的性质先证△COF≌△EBF,得到OF=BF,再求得∠AOB=60°,利用有一个角是60°的等腰三角形是等边三角形,得到△AOB为等边三角形,最后利用三线合一的性质得到AF平分∠BAO.【详解】证明:(1)∵四边形是矩形,∴则,即∴又∵,∴四边形是平行四边形,∴四边形是菱形;(2)∵四边形是菱形,∴,∴,∵四边形是矩形,∴,∴,在和中∴,∴,∵,∴,∴,∵,∴是等边三角形,∵,∴平分.【点睛】本题考查了矩形的性质,菱形的判定与性质,等边三角形的判定,三线合一的性质.24、(1);(2);(3).【解析】

(1)由DE//BC,EF//DC,可证得四边形DCFE是平行四边形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的长即为BC+DE的值;(2)同(1)做CE//DB,交AB延长线于点E,易证四边形DBEC是平行四边形,根据已知可证△DAB△CBA(SAS),得AC=DB,等量代换,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;(3)连接AE、CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.【详解】解:(1)∵DE//BC,EF//DC,∴四边形DCFE是平行四边形,∴DE=CF,DC=EF,∴BC+ED=BC+CF=BF,∵DC⊥BE,DC//EF,∴∠BEF=90°,在Rt△BEF中,∵BE=5,EF=DC=3,∴BF==.故BC+DE=.(2)做CE//DB,交AB延长线于点E,由(1)同理,可证得四边形DBEC是平行四边形,BE=DC=3,在△DAB和△CBA中,∴△DAB△CBA(SAS),∴DB=AC,∵四边形DBEC是平行四边形,DB=CE,∴AC=CE,∵AC⊥DB,∴AC⊥CE,∴△ACE是等腰直角三角形,∵AE=AB+BE=AB+DC=5+3=8,∴AC=,求得AC=.故AC的长为.(3)AC=DF;证明:连接AE、CE,如图,∵四边形ABCD是平行四边形,∴AB//DC,∵四边形ABEF是矩形,∴AB//FE,BF=AE,∴DC//FE,∴四边形DCEF为平行四边形,∴CE=DF,∵四边形ABEF是矩形,∴B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论