2023届湖北省荆门市沙洋县数学八年级第二学期期末教学质量检测试题含解析_第1页
2023届湖北省荆门市沙洋县数学八年级第二学期期末教学质量检测试题含解析_第2页
2023届湖北省荆门市沙洋县数学八年级第二学期期末教学质量检测试题含解析_第3页
2023届湖北省荆门市沙洋县数学八年级第二学期期末教学质量检测试题含解析_第4页
2023届湖北省荆门市沙洋县数学八年级第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.定义,当时,,当<时,;已知函数,则该函数的最大值是()A. B. C. D.2.下表记录了甲、乙、丙、丁四名同学参加某区“中华魂”主题教育演讲比赛的相关数据:根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择甲乙丙丁平均数分90809080方差A.甲 B.乙 C.丙 D.丁3.一家鞋店在一段时间内销售了某种男鞋200双,各种尺码鞋的销售量如下表所示:尺码/厘米

23

23.5

24

24.5

25

25.5

26

销售量/双

5

10

22

39

56

43

25

一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据是()A.平均数 B.中位数 C.众数 D.方差4.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A. B.C. D.5.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟 B.48分钟 C.46分钟 D.33分钟6.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80.下列关于对这组数据的描述错误的是()A.中位数是75 B.平均数是80 C.众数是80 D.极差是157.如图,在△ABC中,AB=4,BC=8,AC=6,D、E分别是BC、CA的中点,则△DEC的周长为()A.18 B.8 C.10 D.98.若分式的值为0,则()A. B. C. D.9.一次函数y=kx+m的图象如图所示,若点(0,a),(﹣2,b),(1,c)都在函数的图象上,则下列判断正确的是()A.a<b<c B.c<a<b C.a<c<b D.b<a<c10.小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是()A.13千米 B.14千米 C.15千米 D.16千米二、填空题(每小题3分,共24分)11.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.12.点P(a,b)在第三象限,则直线y=ax+b不经过第_____象限13.关于x的方程有解,则k的范围是______.14.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:1.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:已知x3=10648,且x为整数∵1000=103<10648<1003=1000000,∴x一定是______位数∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是_____;∴x=______.15.关于的方程是一元二次方程,那么的取值范围是_______.16.直角三角形一条直角边为6,斜边为10,则三边中点所连三角形的周长是_________面积是___________.17.若关于的一元一次不等式组所有整数解的和为-9,且关于的分式方程有整数解,则符合条件的所有整数为__________.18.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_____.三、解答题(共66分)19.(10分)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A,B,C,D,E五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.(1)求a,b的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.20.(6分)如图①,在平面直角坐标系中,点,的坐标分别为,,点在直线上,将沿射线方向平移,使点与点重合,得到(点、分别与点、对应),线段与轴交于点,线段,分别与直线交于点,.(1)求点的坐标;(2)如图②,连接,四边形的面积为__________(直接填空);(3)过点的直线与直线交于点,当时,请直接写出点的坐标.21.(6分)感知:如图①,在正方形ABCD中,点E在对角线AC上(不与点A、C重合),连结ED,EB,过点E作EF⊥ED,交边BC于点F.易知∠EFC+∠EDC=180°,进而证出EB=EF.

探究:如图②,点E在射线CA上(不与点A、C重合),连结ED、EB,过点E作EF⊥ED,交CB的延长线于点F.求证:EB=EF

应用:如图②,若DE=2,CD=1,则四边形EFCD的面积为22.(8分)关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.23.(8分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.

(1)求直线BC的解析式;

(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;24.(8分)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池

修建费用(万元/个)

可供使用户数(户/个)

占地面积(m2/个)

A型

3

20

48

B型

2

3

6

政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.25.(10分)解方程(1)+=3(2)26.(10分)阅读材料I:教材中我们学习了:若关于的一元二次方程的两根为,根据这一性质,我们可以求出己知方程关于的代数式的值.问题解决:(1)已知为方程的两根,则:___,___,那么_(请你完成以上的填空)阅读材料:II已知,且.求的值.解:由可知又且,即是方程的两根.问题解决:(2)若且则;(3)已知且.求的值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据直线y=x-3和直线y=2x+3,知它们的交点的坐标为(-6,-1),再根据新定义讨论:x≤-6,y=2x+3,利用一次函数的性质得到y有最大值-1;x>-6时,y=x-3,则x=-6时,利用一次函数的性质得到y有最大值-1;【详解】解:当x-3≥2x+3,解得x≤-6时,y=min(x-3,2x+3)=2x+3,则x=-6时,y有最大值-1;

当x-3<2x+3,解得x>-6时,y=min(x-3,2x+3)=x-3,则x=-6时,y有最大值-1;

所以该函数的最大值是-1.

故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.2、A【解析】

根据表格中的数据可知,甲、丙的平均成绩较好,再根据方差越小越稳定即可解答本题.【详解】由平均数可知,甲和丙成绩较好,

甲的方差小于丙的方差,故甲发挥稳定.故选A【点睛】本题考查方差、算术平均数,解答本题的关键是明确平均数和方差的意义.3、C【解析】

∵众数是在一组数据中,出现次数最多的数据,体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.故选C.4、A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.5、A【解析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.6、A【解析】

根据平均数,中位数,众数及极差的概念进行判断.【详解】解:将6名同学的成绩从小到大排列,第3、4个数都是80,故中位数是80,∴答案A是错误的,其余选项均正确.故选:A.【点睛】本题重点考查平均数,中位数,众数及极差的概念及其求法.7、D【解析】

根据三角形中位线的性质可得出DE,CD,EC的长度,则△DEC的周长可求.【详解】∵D、E分别是BC、CA的中点,∴DE是△ABC的中位线.∵AB=4,BC=8,AC=6,∴DE=AB=2,EC=AC=3,CD=CB=4,∴△DEC的周长=2+3+4=9,故选:D.【点睛】本题主要考查三角形中位线,掌握三角形中位线的性质是解题的关键.8、B【解析】

根据分式的值为0的条件,列式求解即可.分式的值为0的条件是:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意得:解得:x=1故答案为B【点睛】本题考查了分式的值为0的条件,即:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.9、B【解析】

由一次函数y=kx+m的图象,可得y随x的增大而减小,进而得出a,b,c的大小关系.【详解】解:由图可得,y随x的增大而减小,∵﹣2<0<1,∴c<a<b,故选:B.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10、C【解析】由纵坐标看出,返回时离家的距离是30千米,由横坐标看出,返回时所用的时间是15−13=2小时,由路程与时间的关系,得返回时的速度是30÷2=15千米,由时间、速度的关系得15×1=15千米,故选:C.二、填空题(每小题3分,共24分)11、1【解析】

过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴A(1,1),B(2,),∵AC∥BD∥y轴,∴C(1,k),D(2,),∵△OAC与△ABD的面积之和为,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案为1.【点睛】本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.12、一【解析】

点在第三象限的条件是:横坐标为负数,纵坐标为负数.进而判断相应的直线经过的象限【详解】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴直线y=ax+b经过第二、三、四象限,不经过第一象限,故答案为:一.【点睛】此题主要考查四个象限的点坐标特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.掌握直线经过象限的特征即可求解13、k≤5【解析】

根据关于x的方程有解,当时是一次方程,方程必有解,时是二元一次函数,则可知△≥0,列出关于k的不等式,求得k的取值范围即可.【详解】解:∵方程有解①当时是一次方程,方程必有解,此时②当时是二元一次函数,此时方程有解∴△=16-4(k-1)≥0

解得:k≤5.综上所述k的范围是k≤5.故答案为:k≤5.【点睛】本题考查了一元二次方程根的判别式的应用.

总结:一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根.14、两;2;2;22【解析】

根据立方和立方根的定义逐一求解可得.【详解】已知,且为整数,,一定是两位数,的个位数字是,的个位数字一定是,划去后面的三位得,,的十位数字一定是,.故答案为:两、、、.【点睛】本题主要考查立方根,解题的关键是掌握立方与立方根的定义.15、【解析】

根据一元二次方程的概念及一般形式:即可求出答案.【详解】解:∵关于的方程是一元二次方程,∴二次项系数,解得;故答案为.【点睛】本题考查一元二次方程的概念,比较简单,做题时熟记二次项系数不能等于0即可.16、126【解析】

先依据题意作出简单的图形,进而结合图形,运用勾股定理得出AC,由三角形中位线定理计算即可求出结果【详解】解:如图,∵D,E,F分别是△ABC的三边的中点,AB=10,BC=6,∠C=90°;根据勾股定理得:,∵D,E,F分别是△ABC的三边的中点,,,∴∠C=∠BED=∠EDF=90°;∴△DEF的周长;△DEF的面积故答案为:12,6【点睛】本题考查了三角形的中位线定理和勾股定理,掌握三角形的中位线等于第三边的一半是解题的关键.17、-4,-1.【解析】

不等式组整理后,根据所有整数解的和为-9,确定出x的值,进而求出a的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a的值,求出符合条件的所有整数a即可.【详解】解:,

不等式组整理得:-4≤x<a,

由不等式组所有整数解的和为-9,得到-2<a≤-1,或1<a≤2,

即-6<a≤-1,或1<a≤6,

分式方程,

去分母得:y2-4+2a=y2+(a+2)y+2a,

解得:y=-,经检验y=-为方程的解,

得到a≠-2,∵有整数解,

∴则符合条件的所有整数a为-4,-1,

故答案为:-4,-1.【点睛】此题考查分式方程的解,一元一次不等式组的整数解,熟练掌握运算法则是解题的关键.18、:2或﹣1.【解析】试题解析:当k>0时,y值随x值的增大而增大,∴,解得:,此时=2;当k<0时,y值随x值的增大减小,∴,解得:,此时=-1.综上所述:的值为2或-1.三、解答题(共66分)19、(1)a=20,b=15;(2)该班学生这一周帮助父母做家务时间的平均数约为1.68小时;(3)符合实际,理由见解析.【解析】

(1)读图可知:C等级的频率为40%,总人数为50人,可求出a,则b也可得到;(2)借助求出的ab的值,可估计出该班学生在这次社会活动中帮父母做家务的平均时间;(3)求得中位数后,根据中位数的意义分析.【详解】(1)a=50×40%=20,b=50-2-10-20-3=15;(2)由“中值法”可知,=1.68(小时),答:该班学生这一周帮助父母做家务时间的平均数约为1.68小时;(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,因为小明帮父母做家务的时间大于中位数.所以他帮父母做家务的时间比班级中一半以上的同学多.【点睛】本题考查读频数分布直方图、扇形图的能力和利用统计图获取信息的能力,加权平均数的计算以及中位数的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)C(-1,6);(2)24;(3)点N的坐标为(,)或(,);【解析】

(1)先求出点E的坐标,根据平移得到OA=CE=4,即可得到点C的坐标;(2)根据图象平移得到四边形的面积等于的面积,根据面积公式计算即可得到答案;(3)根据直线特点求出,tan∠NCE=tan∠POB=,再分两种情况:点N在CE的上方或下方时,分别求出直线CN的解析式得到点N的坐标即可.【详解】(1)∵点在直线上,∴m=6,∴E(3,6),由平移得CE=OA=4,∴点C的坐标是(-1,6);(2)由平移得到四边形的面积等于的面积,∴,故答案为:24;(3)由直线y=2x得到:tan∠POB=,当时,tan∠NCE=tan∠POB=,①当点N在CE上方时,直线CE的表达式为:,低昂点C的坐标代入上式并解得:b=,∴直线CN的表达式是y=x+,将上式与y=2x联立并解得:x=,y=,∴N(,);②当点N在CE下方时,直线CE的表达式为:y=-x+,同理可得:点N(,);综上,点N的坐标为(,)或(,).【点睛】此题考查函数图象上的点坐标,平行四边形的面积公式,平移的性质,求函数解析式,根据解析式求角的三角函数值,综合掌握各知识点是解题的关键.21、探究:证明见详解;应用:4+【解析】

探究:根据正方形的性质得到AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.求得∠ACB=∠ACD=45°,根据全等三角形的性质得到ED=EB,∠EDC=∠EBC,求得∠EFB=∠EDC,根据等腰三角形的判定定理即可得到结论;

应用:连接DF,求得△DEF是等腰直角三角形,根据勾股定理得到CF=DF【详解】解:探究:∵四边形ABCD是正方形,

∴AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.

∴∠ACB=∠ACD=45°,

又∵EC=EC,

∴△EDC≌△EBC(SAS),

∴ED=EB,∠EDC=∠EBC,

∵EF⊥ED,

∴∠DEF=90°,

∴∠EFC+∠EDC=180°又∵∠EBC+∠EBF=180°,

∴∠EFB=∠EDC,

∴∠EBF=∠EFB,

∴EB=EF;

应用:连接DF,

∵EF=DE,∠DEF=90°,

∴△DEF是等腰直角三角形,

∵DE=2,

∴EF=2,DF=22,

∵∠DCB=90°,CD=1,

∴CF=DF2-CD2=7,

∴四边形EFCD的面积=S△DEF+S△CDF=【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的判定和性质,正确的识别图形是解题的关键.22、(1)证明见解析;(2)-1.【解析】

(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根.(2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.23、(1)BC的解析式是y=−x+3;(2)当0<t⩽2时,S=−3t+6;当t>2时,S=3t−6.【解析】

(1)令y=0,即可求得A的坐标,根据OC=3OA即可求得C的坐标,再根据∠CBA=45°,即△BOC的等腰直角三角形,则B的坐标即可求得,然后利用待定系数法求得BC的解析式;

(2)分成P在AB和在AB的延长线上两种情况进行讨论,利用三角形面积公式即可求解.【详解】(1)在y=kx+k中,令y=0,则x=−1,即A的坐标是(−1,0).

∵OC=3OA,

∴OC=3,即C的坐标是(0,3).

∵∠CBA=45∘,

∴∠OCB=∠CBA=45∘,

∴OB=OC=3,则B的坐标是(3,0).

设BC的解析式是y=kx+b,则,

解得:,

则BC的解析式是y=−x+3;

(2)当0<t⩽2时,P在线段AB上,则BP=4−2t,

则S=(4−2t)×3=−3t+6;

当t>2时,OP=2t−4,则S=×3(2t−4),即S=3t−6.【点睛】本题考查一次函数综合,解题的关键是掌握待定系数法求解析式.24、(1)y=x+40;(2)3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)能【解析】试题分析:(1)根据总价=单价×数量,即可得到结果;(2)根据幸福村共有264户村民,沼气池修建用地708平方米,即可列不等式组求解;(3)先根据一次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论