2023届黑龙江省哈尔滨市建平学校数学八年级第二学期期末考试试题含解析_第1页
2023届黑龙江省哈尔滨市建平学校数学八年级第二学期期末考试试题含解析_第2页
2023届黑龙江省哈尔滨市建平学校数学八年级第二学期期末考试试题含解析_第3页
2023届黑龙江省哈尔滨市建平学校数学八年级第二学期期末考试试题含解析_第4页
2023届黑龙江省哈尔滨市建平学校数学八年级第二学期期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.2.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,123..函数的自变量x的取值范围是()A. B.且 C. D.且4.点P(2,﹣3)关于y轴的对称点的坐标是()A.(2,3) B.(﹣2,﹣3) C.(﹣2,3) D.(﹣3,2)5.函数y=中自变量x的取值范围为()A.x≥0 B.x≥-1 C.x>-1 D.x≥16.一元二次方程配方后可变形为().A. B.C. D.7.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是()A.平均数 B.众数 C.中位数 D.方差8.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A.邻边不等的矩形 B.等腰梯形C.有一角是锐角的菱形 D.正方形9.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体 B.样本 C.个体 D.样本容量10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A. B. C. D.211.在数轴上与原点的距离小于8的点对应的x满足()A.x<8 B.x>8 C.x<-8或x>8 D.-8<x<812.下列各式正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是_______(填序号).14.如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为___15.如图,将绕着直角顶点顺时针旋转,得到,连接,若,则__________度.16.如图,在平面直角坐标系中,菱形的顶点在轴上,边在轴上,若点的坐标为,则点的坐标是____.17.如图,点是函数的图象上的一点,过点作轴,垂足为点.点为轴上的一点,连结、.若的面积为,则的值为_________.18.一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要___小时.三、解答题(共78分)19.(8分)现将三张形状、大小完全相同的平行四边形透明纸片分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图①、图②、图③).图②矩形(正方形),分别在图①、图②、图③中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.要求:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形.(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙.(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.20.(8分).已知:如图4,在中,∠BAC=90°,DE、DF是的中位线,连结EF、AD.求证:EF=AD.21.(8分)矩形ABCD的边长AB=8,BC=10,MN经过矩形的中心O,且MN=10;沿MN将矩形剪开(如图1),拼成菱形EFGH(如图2).试求:(1)CN的长度;(2)菱形EFGH的两条对角线EG、FH的长度.22.(10分)矩形纸片ABCD,AB=4,BC=12,E、F分别是AD、BC边上的点,ED=1.将矩形纸片沿EF折叠,使点C落在AD边上的点G处,点D落在点H处.(1)矩形纸片ABCD的面积为(2)如图1,连结EC,四边形CEGF是什么特殊四边形,为什么?(1)M,N是AB边上的两个动点,且不与点A,B重合,MN=1,求四边形EFMN周长的最小值.(计算结果保留根号)23.(10分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)17≤t<8m28≤t<91139≤t<10n410≤t<114请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.24.(10分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(3)班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有名学生?其中穿175型校服的学生有人.(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆心角度数为;(4)该班学生所穿校服型号的众数是,中位数是.25.(12分)一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?26.正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.(1)求正比例函数和一次函数的表达式;(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;(3)求出的面积.

参考答案一、选择题(每题4分,共48分)1、A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.2、C【解析】试题分析:将原数据按由小到大排列起来,处于最中间的数就是中位数,如果中间有两个数,则中位数就是两个数的平均数;众数是指在这一组数据中出现次数最多的数.考点:众数;中位数3、A【解析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:且x−3≠0,解得:且x≠3,自变量的取值范围,故选:A.【点睛】考查自变量的取值范围,熟练掌握分式以及二次根式有意义的条件是解题的关键.4、B【解析】试题分析:点P(2,-3)关于y轴的对称点的坐标是(-2,-3).故选B.考点:关于x轴、y轴对称的点的坐标.5、B【解析】根据题意得:x+1≥0,解得:x≥-1.故选:B.6、C【解析】

常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,∴,即.故选C.【点睛】此题考查的是配方法,掌握完全平方公式的特征是解决此题的关键.7、D【解析】

依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为,原数据的3,4,4,5的中位数为4,原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;新数据3,4,4,4,5的平均数为,新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;∴添加一个数据4,方差发生变化,故选D.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.8、D【解析】如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为60°,则另一个角为30°,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为60°;(3)为等腰梯形.故选D.9、B【解析】

根据总体、个体、样本、样本容量的定义逐个判断即可.【详解】解:抽出的500名考生的数学成绩是样本,故选B.【点睛】本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.10、A【解析】

连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC=,CF=3,则∠ACF=90°,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长.【详解】连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,FCG=45°,AC=BC=,CF=CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,AF=,∵H是AF的中点,∴CH=AF=.故选A.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.11、D【解析】

解:数轴上对应x的点到原点的距离可表示为|x|.由题意可知解得故选D.12、C【解析】

根据分式的性质,分式的加减,可得答案.【详解】A、c=0时无意义,故A错误;B、分子分母加同一个整式,分式的值发生变化,故B错误;C、分子分母都除以同一个不为零的整式,分式的值不变,故C符合题意;D、,故D错误;故选C.【点睛】本题考查了分式的性质及分式的加减,利用分式的性质及分式的加减是解题关键.二、填空题(每题4分,共24分)13、①②③.【解析】

根据平均数、方差和中位数的意义,可知:甲乙的平均数相同,所以①甲、乙两班学生的平均水平相同.根据中位数可知乙的中位数大,所以②乙班优秀的人数比甲班优秀的人数多.根据方差数据可知,方差越大波动越大,反之越小,所以甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.

故答案为①②③.【点睛】本题考查统计知识中的中位数、平均数和方差的意义.要知道平均数和中位数反映的是数据的集中趋势,方差反映的是离散程度.14、【解析】

延长EF交CB于M,连接DM,根据正方形的性质得到AD=DC,∠A=∠BCD=90°,由折叠的性质得到∠DFE=∠DFM=90°,通过Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性质得到∠MFC=∠MCF由余角的性质得到∠MFC=∠MBF,于是求得MF=MB,根据勾股定理即可得到结论.【详解】如图,延长EF交CB于M,连接DM,∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∵将△ADE沿直线DE对折得到△DEF,∴∠DFE=∠DFM=90°,在Rt△DFM与Rt△DCM中,,∴Rt△DFM≌Rt△DCM(HL),∴MF=MC,∴∠MFC=∠MCF,∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,∴∠MFB=∠MBF,∴MB=MC,∴MF=MC=BM=,设AE=EF=x,∵BE2+BM2=EM2,即(1-x)2+()2=(x+)2,解得:x=,∴AE=,故答案为:.【点睛】本题考查了翻折变换-折叠问题,正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.15、70【解析】

首先由旋转的性质,得△ABC≌△A′B′C,然后利用等腰直角三角形的性质等角转换,即可得解.【详解】由旋转的性质,得△ABC≌△A′B′C,∴AC=A′C,∠BAC=∠B′A′C,∠ACA′=90°,∴∠CAA′=∠CA′A=45°∵∴∠BAC=25°∴∠BAA′=∠BAC+∠CAA′=25°+45°=70°故答案为:70.【点睛】此题主要考查利用全等三角形旋转求解角度,熟练掌握,即可解题.16、C(0,-5)【解析】

在Rt△ODC中,利用勾股定理求出OC即可解决问题【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,,∴C(0,-5).【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、【解析】

连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图∵AB⊥y轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8故答案为﹣8【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.18、【解析】

甲单独做一天可完成工程总量的,乙单独做一天可完成工程总量的,二人合作一天可完成工程总量的.工程总量除以二人合作一天可完成工程量即可得出二人合作完成该工程所需天数.【详解】解答:解:设该工程总量为1.二人合作完成该工程所需天数=1÷()=1÷=.【点睛】本题考查列代数式(分式),解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.三、解答题(共78分)19、(1)、答案见解析;(2)、答案见解析;(3)、答案见解析【解析】试题分析:(1)、剪出一个非正方形的矩形,过平行四边形的一个定点作垂线即可;(2)、链接平行四边形的对角线即可得出答案;(3)、找到一边的中点,然后连接其中一个顶点和对边的中点即可.试题解析:如图所示.考点:四边形的性质20、证明:因为DE,DF是△ABC的中位线所以DE∥AB,DF∥AC………….2分所以四边形AEDF是平行四边形………….…5分又因为∠BAC=90°所以平行四边形AEDF是矩形……...8分所以EF=AD…………….….………10分【解析】略21、(1)2;(2)EG=8,FH=4【解析】

(1)过H作HI⊥FG于I点,则MN=EF=FG=BC=10,AB=DC=8可知GI=6,所以求得CN=(10-6)÷2=2;(2)过E作⊥FG,交GF的延长线于点.根据题意可知,所以可求得EG=8,FH=4【详解】(1)过H作HI⊥FG于I点.∴MN=EF=FG=BC=10,AB=DC=8,∴GI=6,∴CN=(10−6)÷2=2.(2)过E作⊥FG,交GF的延长线于点.∵⊥FG,HI⊥FG∴=∠HIG=90°在菱形EFGH中,EF=HG,EF∥HG∴∠EFH1=∠HGI∴△EFH1≌△HGI∴H1F=IG=6∴H1G=16在Rt△EH1G中,根据勾股定理可得∵FG=10,IG=6∴FI=4在Rt△FHI中,根据勾股定理【点睛】本题考查了矩形的性质,菱形的性质,掌握矩形的性质,菱形的性质是解题的关键.22、(1)2;(2)四边形CEGF是菱形,理由见详解;(1)四边形EFMN周长的最小值为.【解析】

(1)矩形面积=长×宽,即可得到答案,(2)利用对角线互相垂直平分的四边形是菱形进行证明,先证对角线相互垂直,再证对角线互相平分.(1)明确何时四边形的周长最小,利用对称、勾股定理、三角形相似,分别求出各条边长即可.【详解】解:(1)S矩形ABCD=AB•BC=12×4=2,故答案为:2.(2)四边形CEGF是菱形,证明:连接CG交EF于点O,由折叠得:EF⊥CG,GO=CO,∵ABCD是矩形,∴AD∥BC,∴∠OGE=∠OCF,∠GEO=∠CFO∴△GOE≌△COF(AAS),∴OE=OF∴四边形CEGF是菱形.因此,四边形CEGF是菱形.(1)作F点关于点B的对称点F1,则NF1=NF,当NF1∥EM时,四边形EFMN周长最小,设EC=x,由(2)得:GE=GF=FC=x,在Rt△CDE中,∵ED2+DC2=EC2,∴12+42=EC2,∴EC=5=GE=FC=GF,在Rt△GCD中,,∴OC=GO=,在Rt△COE中,,∴EF=2OE=,当NF1∥EM时,易证△EAM∽△F1BN,∴,设AM=y,则BN=4-1-y=1-y,∴,解得:,此时,AM=,BN=,由勾股定理得:,,∴四边形EFMN的周长为:故四边形EFMN周长的最小值为:.【点睛】考查矩形的性质、菱形的判定和性质、对称及三角形相似的性质和勾股定理等知识,综合性很强,利用的知识较多,是一道较难得题目.23、(1)7,18,17.5%,45%;(2)3;(3)440人.【解析】

(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【详解】(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点睛】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.24、(1)50;10;(2)补图见解析;(3)14.4°;(4)众数是165和1;中位数是1.【解析】

(1)根据穿165型的人数与所占的百分比列式进行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论