版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列运算结果正确的是()A.x2+2x2=3x4 B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5 D.2x2÷x2=x2.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A. B. C. D.3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b4.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b5.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60° B.50° C.40° D.30°6.(3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2 B. C.5 D.7.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③ B.②③④ C.①③④ D.①②④8.已知反比例函数y=-2A.图象必经过点(﹣1,2) B.y随x的增大而增大C.图象在第二、四象限内 D.若x>1,则0>y>-29.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=110.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.6二、填空题(共7小题,每小题3分,满分21分)11.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=.12.若|a|=2016,则a=___________.13.因式分解:(a+1)(a﹣1)﹣2a+2=_____.14.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.15.分式有意义时,x的取值范围是_____.16.如图,已知的半径为2,内接于,,则__________.17.使有意义的的取值范围是__________.三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,点A和点C分别在x轴和y轴的正半轴上,OA=6,OC=4,以OA,OC为邻边作矩形OABC,动点M,N以每秒1个单位长度的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)直接写出点B的坐标为,直线OB的函数表达式为;(2)记△OMP的面积为S,求S与t的函数关系式;并求t为何值时,S有最大值,并求出最大值.19.(5分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.20.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为;若点P(a,b),则点P的“旋转对应点”P'的坐标为;(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标.21.(10分)如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.22.(10分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的夹角.树杆旁有一座与地面垂直的铁塔,测得米,塔高米.在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、、、在同一条直线上,点、、也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到,参考数据:,,).23.(12分)如图,热气球的探测器显示,从热气球A看一栋髙楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,求这栋高楼BC的高度.24.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线解析式并求出点D的坐标;(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE是等腰三角形时,请直接写出m的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(﹣2x2)3=﹣8x6,故此选项错误;C选项:x2•(﹣x3)=﹣x5,故此选项正确;D选项:2x2÷x2=2,故此选项错误.故选C.【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键.2、A【解析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.3、D【解析】试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.故选D.考点:实数与数轴4、A【解析】
根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A.【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.5、C【解析】试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.考点:平行线的性质.6、B【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.7、C【解析】解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;综上所述,正确的结论有①③④.故选C.点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.8、B【解析】试题分析:根据反比例函数y=kx试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.考点:反比例函数的性质9、D【解析】
先去分母解方程,再检验即可得出.【详解】方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解【点睛】本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验10、D【解析】
欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1.【详解】∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,
则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故选D.二、填空题(共7小题,每小题3分,满分21分)11、1+【解析】试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.12、±1【解析】试题分析:根据零指数幂的性质(),可知|a|=1,座椅可知a=±1.13、(a﹣1)1.【解析】
提取公因式(a−1),进而分解因式得出答案.【详解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案为:(a﹣1)1.【点睛】此题主要考查了提取公因式法分解因式,找出公因式是解题关键.14、15【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=•2π•3•5=15π.故答案为15π.考点:圆锥的计算.15、x<1【解析】
要使代数式有意义时,必有1﹣x>2,可解得x的范围.【详解】根据题意得:1﹣x>2,解得:x<1.故答案为x<1.【点睛】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.16、【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17、【解析】
根据二次根式的被开方数为非负数求解即可.【详解】由题意可得:,解得:.所以答案为.【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.三、解答题(共7小题,满分69分)18、(1),;(2),1,1.【解析】
(1)根据四边形OABC为矩形即可求出点B坐标,设直线OB解析式为,将B代入即可求直线OB的解析式;(2)由题意可得,由(1)可得点的坐标为,表达出△OMP的面积即可,利用二次函数的性质求出最大值.【详解】解:(1)∵OA=6,OC=4,四边形OABC为矩形,∴AB=OC=4,∴点B,设直线OB解析式为,将B代入得,解得,∴,故答案为:;(2)由题可知,,由(1)可知,点的坐标为,∴当时,有最大值1.【点睛】本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式.19、(1);(2).【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.20、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)见解析;(3)直线PP'与x轴的交点坐标(﹣,0)【解析】
(1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;②当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;③当P(a,b)时,同①的方法得,即可得出结论;(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;(3)先确定出yPP'=x+3,即可得出结论.【详解】解:(1)如图1,①当P(﹣4,2)时,∵PA⊥y轴,∴∠PAH=90°,OA=2,PA=4,由旋转知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②当P'(﹣5,16)时,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③当P(a,b)时,同①的方法得,P'(,b﹣a),故答案为:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如图2,过点Q作QB⊥y轴于B,∴∠BQQ'=60°,由题意知,△PAP'是等边三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y轴,PA⊥y轴,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)设yPP'=kx+b',由题意知,k=,∵直线经过点(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直线PP'与x轴的交点坐标(﹣,0).【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.21、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.详解:(1)已知抛物线经过,,∴,解得,∴所求抛物线的解析式为.(2)∵,,∴,,可得旋转后点的坐标为.当时,由得,可知抛物线过点.∴将原抛物线沿轴向下平移1个单位长度后过点.∴平移后的抛物线解析式为:.(3)∵点在上,可设点坐标为,将配方得,∴其对称轴为.由题得B1(0,1).①当时,如图①,∵,∴,∴,此时,∴点的坐标为.②当时,如图②,同理可得,∴,此时,∴点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.22、米.【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论.试题解析:解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴,∵FB=4米,BE=6米,DE=9米,∴,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=,∴AC===6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.23、这栋高楼的高度是【解析】
过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.【详解】过点A作AD⊥BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度医疗服务合同
- 2024年国际快递服务代理与合作合同
- 2024年城市成品油配送服务合同
- 2024年度信息技术咨询服务合同
- 2024年度设备维修保养服务合同
- 2024年度货物采购合同标的质量保证与安全生产责任书
- 做课件步骤教学课件
- 仓库个人年终工作总结
- 2024国际货运代理及供应链管理服务合同
- 2024年建筑垃圾无害化处理合同
- 国际贸易术语2020
- 国网新安规培训考试题及答案
- 2024至2030年中国节流孔板组数据监测研究报告
- 黑龙江省哈尔滨市师大附中2024-2025学年高一上学期10月阶段性考试英语试题含答案
- 第六单元测试卷-2024-2025学年统编版语文三年级上册
- 【课件】Unit4+Section+B+(Project)课件人教版(2024)七年级英语上册
- 青少年法治教育实践基地建设活动实施方案
- 绿化养护续签合同申请书范文
- 教科(2024秋)版科学三年级上册2.6 我们来做“热气球”教学设计
- 追要工程款居间合同范本2024年
- 2024至2030年中国氮化硅轴承球行业市场全景调查及投资前景分析报告
评论
0/150
提交评论